
A Back to Basics Finite State Machine for Mission Critical Applications

Marcel-Titus Marginean mtm@mezonix.com

Finite State machine is a very common design patters and a large variety of implementation
exists from simple switch / case statements to full blown hierarchical state machines implementation. A
typical state machine like the one used by TCP protocol and presented in the diagram bellow it is
represented as a graph where the nodes are states and the oriented edges are valid transition. Each edge
is labeled with a pair Event/Action specifying the event that triggers the transition and the action taken
when the transition happen. If there is no action required only the event is marked.

Most of the implementations of a FSM make use of a classic State Pattern, modeling each state as a
separate class derived from a State Base Class. While this design pattern it is very powerful enabling
complex designs it is often avoided by many embedded / real-time engineers due to a few reasons:
- Perceived complexity of the design when in most places where a state machines is needed the
problems are relative simple, for example a motor with few states, a packet builder from a byte stuffed
serial data stream etc. The fact that each state is a separate class appears an an overkill in this situations
and often embedded engineer fall back on the error prone practice of switch/case statements. A simpler
FSM having all the processing compact into a single class is often preferred for this kind of
applications.
- The codding of the transitions is often distributed across states therefore lacking a bird-eye view of
the whole transition table for easy audit. Audit is essential in Mission Critical applications. A design

TCP State Machine

mailto:mtm@mezonix.com

that allows all the information defining the state machine to be grouped together for easy audit would
be preferred. It is even better if the programmer implementing a FSM is allowed to focus exclusively
on the problem at hand minimizing the focus he have to pay to “internal plumbing” i.e. implementation
details of the pattern.
- Some common design examples floating around the Internet employs a Java-ish approach to state
transition deleting and dynamically reallocating states objects and this is undesirable in Mission
Critical and Real-Time Embedded applications where engineers prefer to allocate all required memory
at system start-up and delete it upon termination. A design which have no other memory allocation /
de-allocation outside of constructor / destructor is preferred.

The BbFSM (Back to Basics FSM) attempts to address these issues while also providing a few
additional tools to help catch a few common mistakes, like codding multiple transitions triggered by the
same event from a given state or passing invalid values in defining a Finite State Machine.

Make it easy to inspect
 A state machine is fully described by four pieces of information:

List of states: CLOSED, LISTEN, SYN_RCVD, SYN_SENT, ESTABLISHED, FIN_WAIT_1,
FIN_WAIT_2, CLOSING, TIME_WAIT, CLOSE_WAIT, LAST_ACK

List of events: PasiveOpen, ActiveOpen, Close, SYN, SYN_ACK, Send, ACK, FIN, FIN_ACK,
Timeout

The initial State upon creation: CLOSED

The Transition table:
From State Trigger Event To State Action

CLOSED PasiveOpen LISTEN None

CLOSED ActiveOpen SYN_SENT Send Syn

LISTEN SYN SYN_RCVD Send Syn Ack

LISTEN Send SYN_SENT Send Syn

SYN_RCVD ACK ESTABLISHED None

SYN_RCVD Close FIN_WAIT_1 Send Fin

SYN_SENT Close CLOSED None

SYN_SENT SYN_ACK ESTABLISHED Send Ack

ESTABLISHED Close FIN_WAIT_1 Send Fin

ESTABLISHED FIN CLOSE_WAIT, Send Ack

CLOSE_WAIT Close LAST_ACK Send Fin

LAST_ACK ACK CLOSED None

FIN_WAIT_1 ACK FIN_WAIT_2 None

FIN_WAIT_1 FIN CLOSING Send Ack

FIN_WAIT_1 FIN_ACK TIME_WAIT Send Ack

From State Trigger Event To State Action

FIN_WAIT_2 FIN TIME_WAIT Send Ack

CLOSING ACK TIME_WAIT, None

TIME_WAIT Timeout CLOSED None

BbFSM design goal is to be able to group those pieces of information together into an obvious piece of
code to allow for easy code inspection during code reviews. The usage of BbFSM enable us to achieve
this goal easily while declaring the state machine class:

class TCP_StateMachine: public BbFSM{
public:

 enum States {CLOSED, LISTEN, SYN_RCVD, SYN_SENT, ESTABLISHED, FIN_WAIT_1,
 FIN_WAIT_2, CLOSING, TIME_WAIT, CLOSE_WAIT, LAST_ACK};
 enum Events {PasiveOpen, ActiveOpen, Close, SYN, SYN_ACK, Send,
 ACK, FIN, FIN_ACK, Timeout};

 TCP_StateMachine():BbFSM(CLOSED){ // initial state is closed.

// From State, Triggering Event, To State, Action (i.e. method to call)

 TRANSITION(CLOSED,PasiveOpen, LISTEN, None);
 TRANSITION(CLOSED,ActiveOpen, SYN_SENT, &TCP_StateMachine::SendSyn);
 TRANSITION(LISTEN,SYN, SYN_RCVD, &TCP_StateMachine::SendSynAck);
 TRANSITION(LISTEN,Send, SYN_SENT, &TCP_StateMachine::SendSyn);
 TRANSITION(SYN_RCVD,ACK, ESTABLISHED, None);
 TRANSITION(SYN_RCVD,Close, FIN_WAIT_1, &TCP_StateMachine::SendFin);
 TRANSITION(SYN_SENT,Close, CLOSED, None);
 TRANSITION(SYN_SENT,SYN_ACK, ESTABLISHED, &TCP_StateMachine::SendAck);
 TRANSITION(ESTABLISHED,Close, FIN_WAIT_1, &TCP_StateMachine::SendFin);
 TRANSITION(ESTABLISHED, FIN, CLOSE_WAIT, &TCP_StateMachine::SendAck);
 TRANSITION(CLOSE_WAIT,Close, LAST_ACK, &TCP_StateMachine::SendFin);
 TRANSITION(LAST_ACK, ACK, CLOSED, None);
 TRANSITION(FIN_WAIT_1,ACK, FIN_WAIT_2, None);
 TRANSITION(FIN_WAIT_1,FIN, CLOSING, &TCP_StateMachine::SendAck);
 TRANSITION(FIN_WAIT_1,FIN_ACK, TIME_WAIT, &TCP_StateMachine::SendAck);
 TRANSITION(FIN_WAIT_2, FIN, TIME_WAIT, &TCP_StateMachine::SendAck);
 TRANSITION(CLOSING, ACK, TIME_WAIT, None);
 TRANSITION(TIME_WAIT, Timeout, CLOSED, None);
 }

protected: // Declaration of actions / methods

 void SendSyn(States from, Events evt, States to, void *, size_t);
 void SendSynAck(States from, Events evt, States to, void *, size_t);
 void SendAck(States from, Events evt, States to, void *, size_t);
 void SendFin(States from, Events evt, States to, void *, size_t);

 virtual void ERROR_EventReceivedInTerminalState(int from, int evt,
 void *data, size_t dataSz);
};

Built-in safety features

The required parameter of the BbFSM constructor forces the user to provide the initial state,
therefore making sure the state machine is always initialized properly. After the constructor is finished,
no other memory allocation/deallocation happen until the destructor is being called. As a result making
the state machine member into a class allocated at startup and deleted at program termination is
compliant with recommended Embedded RT practices.
The base class BsFSM define the ERROR_EventReceivedInTerminalState method as pure, therefore
forcing the programmer to implement it. This method is called whenever the state machine receive
events after reaching a terminal state, i.e. a state from which no transition out exists. While in theory
there is absolutely nothing wrong with a terminal state in state machine design, in embedded systems
where a piece of software is expected to run for months or years running into a terminal state it is rather
odd. The reason why the framework forces the programmer to create a body for this function is to make
sure that he is aware of this states existence. If the programmer knows that reaching a terminal state is
normal the body of the function can be empty and nothing happen, but if this is a state machine that is
not supposed to reach a terminal state this method can attempt to implement some disaster mitigation
code or at minimum log the unexpected result in the hope that the problem will be seen during testing.
A similar method WARNING_UnhandledEventByCurentState is called whenever an event is
received for which no transition exists from current state. However this method is implemented as an
empty body in base class and the programmer can re implement it only if is needed. Something like
this is expected to happen without being an error (for example the impatient user presses start button
twice or more while the device is initializing). Therefore the framework does not coerce it’s
implementation if not desired. In the example above this warning method is not overridden.

The TRANSITION macro it is used by the framework to add entries into the transition table
(practically a map of maps). The reason for this being a macro which in turn call the transition(...)
methods of the base class is to be able to enforce a set of safety features. The macro implementation
beside calling the transition it also enforce compile time checks to not have two transitions from the
same state triggered by the same event which is a mistake in FSM design. It also prevents using a
numeric value instead of a state or event name as well as the mistake of reversing a state with the event
by triggering a compilation error in all these cases. In order for this macro to work the States and
Event enumerations must have these names. That is, the States enumeration must be names States and
Events enumeration must be named Events. This safety feature as matter of fact already caught an
error in the implementation of this example, originally I was looking at the transition TCP diagram
from the url: http://www.texample.net/media/tikz/examples/PNG/tcp-state-machine.png
which contains a error. In that diagram the transition from FIN_WAIT_1 to CLOSING is represented
as an ACK instead of an FIN / ACK. When I implemented the transition as
 TRANSITION(FIN_WAIT_1, ACK, CLOSING, None);
I got a compiler error because the table entry conflicted with the one above. This made the mistake
evident and proved that the safety feature worked as intended. It was just that the error caught this time
has not been a programmer error but an error in the specification document.

Implementation details

The class BbFSM define the state machine and each implementation inherits from this one as presented
in the example above. The states transition table is stored into a map of maps while the current state is
stored in currentState variable used to look-up into the first level map. The first level map is indexed
with the From state and failure to lookup currentState in this outer level map triggers the
ERROR_EventReceivedInTerminalState(...) handler to be called. The value type of this map is the
second level map, indexed by the Event id. Failure of lookup at this level trigger the
WARNING_UnhandledEventByCurentState(...) method to be called. If found, the value type in this
second level map it is a pair where the first element is the To state id and the second element is a
pointer to an instance of a Caller object which holds a pointer to the method registered for this
transition and is able to call it when the transition happen.
The transition(...) methods are used to register the methods for a given From-Event transition. If
None member variable is passed, a NULL pointer instead of the caller pointer is registered. The state
transition will take place but no callback method is being notified. The macro TRANSITION is using
the names passed as parameters to declare three constants:
const States State_<FromState>Event<EventName> with value equal with <ToState>
const States State<FromState>Event<EventName> with value equal with <FromState>
const Events State<FromState>Event_<EventName> with value equal with the event value
This way any entry that have the same From_State and Event as another one will generate a
compilation errors because it redefines an already existing constant. Swapping the event with a state
will also trigger a compilation error because it will attempt to assign an event value to a state constant
or a state to an event. We pass to the transition() method the values assigned to these constants instead
of the original macro parameters in order to quiet the compiler warnings.
To trigger a transition an event is being posted with putEvent(...) method, which can also take two
optional parameters in the form of a void pointer and an size_t value. The framework does not
interpret these two extra parameters in any way, they are just passed to the appropriate handler. The
putEvent method from the base class takes an integer instead of Events as most likely it will be called
from a deserialized value from the network or some hardware. It is however always possible to create a
postEvent in the derived class which takes an event and call in turn the putEvent from the main class, if
the events will always be posted from hardcoded statements instead of a variable set by unrelated code.
With implementation of the framework having well under 100 lines of code it can be easily understood
modified and audited.

