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Abstract - The paper proposes a distributed control architecture for indoor robot navigation employing both 

on board and external computer vision units. A communication protocol for cooperative localization and 

obstacle avoidance is developed, where the visual processing is performed cooperatively between an on 

board unit (robot) and an external unit (base station), each of which has access to the on-board (mobile) and 

house mounted (fixed) cameras respectively. A set of data-structures and algorithms for distributed video 

processing and decision making are proposed. The idea of an aspect oriented indexing system for a database 

of visual objects used in object recognition is introduced.                             
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1  Introduction 

 

  Anticipated for a long time in science-fiction 

literature domestic robotics is timidly starting to appear. 

While the first applications like vacuum-cleaners or toys 

do not share much with the versatile robotic servants 

envisioned in literature, it is just a matter of time before 

more useful robots appear, mainly driven by the demand 

for help from the aging population in the industrialized 

world. An active area of research is already taking place 

for technologies to achieve what is called independent 

assisted living where the senior citizens are enabled by 

technology to live alone in their own houses as opposed to 

being moved into an assisted living facility while being 

able to receive help as needed [14]. Domestic robots are 

explored to play a prime role in this field in the not so 

distant future [12, 14]. 

 One of the main obstacles faced by the development 

of mobile robots is the ability to properly operate in 

domestic environments where they must be able to safely 

navigate and avoid objects, people or pets [13]. While 

non-visual methods have been attempted [13], computer 

vision emerges as the most promising technology [3, 4, 5, 

6, 15,], but this brings with it the major challenge of 

processing in real-time the humongous amount of 

information captured by cameras on an energy efficient 

embedded computer.  

 In this paper we propose a method to reduce the 

processing required by the on board computer by taking 

advantage of the house wireless network, fixed cameras 

and additional processing capabilities available on a base 

station where higher power consumption required by 

faster CPUs is not a problem. The on board computer is 

still in charge of basic navigation and it should be able to 

maintain course and operate autonomously for periods 

when it is out of sight from the fixed cameras; however 

the base station computer(s) shall be able to provide 

localization help when the robot is in view and handle the 

mission. The more powerful computer on the base station 

maintains a database of objects, images, and performs 

high level object recognition tasks not only on the images 

from fixed cameras but also on the pre-processed images 

sent by the mobile unit (robot). By doing preprocessing of 

images on the mobile unit and sending sub-images for 

recognition only when needed, we should consider to 

optimize the amount of Wi-Fi bandwidth consumption. 

 Moreover, we reduce the amount of processing by 

taking advantage of prior knowledge about the 

environment. Since the robot operates in a house already 

augmented with sensors, a map of the building, and the 

position of the camera is readily available, sensors, 

artificial landmarks or beacons can be placed in areas of 

special interests with their location being known 

beforehand. 

 The paper is organized as follows: In the next sub-

section a brief literature review is presented; section 2 is 

dedicated to the principal of computer vision methods 

relevant to the proposed system; the proposed architecture 

is introduced and discussed in section 3, while section 4 

gives the conclusions drawn and the future research plan. 

 

1.1 Previous Work 

 

 A combination of ultrasonic sensors, laser range-

finders, and RFID tags were used [13] for indoor robot 

navigation without using computer vision. Stereo vision 

has been used for mapping [16] the data being structured 

as a 2.5D occupancy, elevation and slope grid. Davidson 

[17] presented a method to do real-time localization and 

mapping of the environment using a monocular camera, 
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while [18] artificial landmarks are placed on the ceiling 

and a vertical looking camera is used to detect their 

position and orientation and infer the pose of the robot. 

Visual sonar [21] is a relative new technique attempting to 

recover depth information from monocular images by 

deriving cues based on real life constraints used to 

eliminate the ambiguity inherent to monocular vision. 

 Due to the large amount of processing required for 

computer vision, researchers have always tried to employ 

a whole plethora of methods to improve the localization 

by using various pre-defined or innate knowledge about 

the environment or by aiding the visual localization 

system with external information. In [1] for outdoor 

navigation and mapping the computer vision is aided by a 

differential GPS and location information is processed by 

a distributed Extended Kalman Filter. Dead-reckoning is 

used by Cobos et al. [2] beside the Visual Odometer to 

help with robot localization. In Cluj-Napoca [3] they used 

a laser beam to detect dynamic obstacles, while a laser 

scanner has been employed by Biber, Fleck, and Duckett 

[4] to collect data for model building. High level prior-

knowledge of the environment has been employed [15], 

where the indoor space has been modeled as horizontal 

and vertical planes having different orientations while the 

obstacles (objects) have not been modeled only noted in 

the grid. 

 In line with our research, Pizarro et al. [5] used a rig 

of calibrated and synchronized cameras to achieve robot 

and obstacle localization with a collaborative system 

employing external cameras, also presenting a mobile 

robot in [6]. 

 

2  Vision Techniques 

 

Having external cameras in the environment where the 

robot is navigating provides a series of opportunities for 

better localization compared with a monocular camera 

robot. In our research we plan to apply a combination of 

vision based localization methods. The first one is the 

ability to use epipolar geometry to resolve the mobile 

camera pose or to precisely map an object position and 

shape by matching the image seen by the robot with the 

image seen by the fixed camera. Tracking of moving 

objects is the second method, where we plan for the 

external fixed cameras to track robot movement on the 

observed area and provide external aid for localization. 

Optical flow of reactive navigation is going to be our fall-

back option when the robot has to navigate on an 

unobserved portion between two observed locations. 

Lastly, artificial markers can be attached to key points on 

the unobserved location such that the robot can localize its 

position by triangulation on the map. 

 

2.1 Epipolar Geometry 
 

 In the epipolar geometry technique two or more 

cameras oversee the same scene from two different points, 

and they can have different orientations (Figure 1). The 

point X is projected on the first image plane as x and on 

the second image as x’ respectively. The two points are 

being related by the equation x'𝑇Ex=0 , where the 

Essential Matrix E= �̂�𝑅 𝑖𝑠 as presented in [7].     

 

 Once a minimum of 8 matching pairs of points in the 

two images have been detected by a feature tracking 

algorithm the essential matrix E can be computed using 

the “Eight-point Algorithm” [7]; and from it the position 

and orientation of robot camera in respect to a fixed 

camera can be recovered using Singular Value 

Decomposition (SVD) method [19].   
  

2.2 Tracking 
 

 The base station uses images from fixed cameras to 

detect and track the robots, people, pets, and objects that 

are being moved in the environment. Fixed cameras 

enable us to employ a background extraction method. 

Moving objects are detected by subtracting the current 

image from a reference background model. In our work 

we use the BackgroundSubtractorMOG provided by 

OpenCV library which employs a Gaussian mixture-based 

Background/Foreground Segmentation Algorithm [8].   

 For each detected object we keep track of the 

position, movement vector, apparent size and shape, local 

histogram, and the probability of it being a (particular) 

robot. When two or more image blobs join into a bigger 

blob and/or separate, the histogram and previous 

trajectory, size and shape are used to try to keep their 

identification. Tracking algorithms assume contiguous 

trajectory for moving objects and attempts to match the 

movement of a blob with a robot by comparing the blob 

movement with the movement reported by the robot. 

  If prior knowledge about the given robot, such as 

color, shape and size are already present in the database, 

this knowledge is also used to update the probability 

associated with the object. 

 

Figure 1. Euclidian relationship between two viewers 
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2.3 Optical Flow Reactive Navigation 
 

 Optical flow is a measure of the image changes due 

to motion during a given time interval dt. The optical flow 

field is the velocity field that represents the motion of the 

object in 3D space projected on the two dimensional plan 

of the image. As presented in Sonka et al. [9] it is possible 

to use optical flow to calculate the real world coordinate 

x(t), y(t), z(t) of a point from its image projection x'(t), 

y'(t). When the movement happens along the camera’s 

axis the formulas will be: 

          𝑥(𝑡) =
x'(𝑡)𝑤(𝑡)𝐷(𝑡)

𝑉(𝑡)
 

          𝑦(𝑡) =
y'(𝑡)𝑤(𝑡)𝐷(𝑡)

𝑉(𝑡)
 

          𝑧(𝑡) =
𝑤(𝑡)𝐷(𝑡)

𝑉(𝑡)
 

where w(t) is speed, D(t) is the distance of a point from 

the focus of expansion (FOE) measured in the image with 

V(t)=dD/dt being its velocity. 

 Having the ability to measure the distance from the 

objects in front of the robot mounted camera enables the 

robot to employ reactive obstacle avoidance and to 

maintain a prescribed distance from the walls when 

navigating into a hallway. This method is to be employed 

when the robot has to navigate alone (without the help of 

the base station) in an unobserved area located between 

two observed rooms. Because optical flow is calculated on 

board it is also used for fast obstacle avoidance; the robot 

being able to react immediately to avoid collisions 

autonomously without the time required to communicate 

with the base station, as shown in Figure 2. 

  

3  Architecture 

3.1 Overview 

The proposed system consists of a fixed unit (computer 

system referred to as Base Station) connected to a number 

of wired or wireless IP cameras overlooking the operating 

space and one or more mobile units (robots) both 

navigating inside the building. Each robot is equipped with 

a (monocular or a stereo) camera, an Inertial Measurement 

Unit consisting of MEMS accelerometers and gyroscopes 

and optional other sensors. The robot is capable of dual 

mode navigation: autonomous (reactive mode) and guided 

(map based). 

 The video from the fixed camera is continuously 

received by the Base Station. The Base Station uses the 

video streams from fixed cameras to perform object 

tracking and recognition, and to also maintain the current 

3D model of the environment by keeping track of the 

objects or inhabitants.   

 The images from the robot camera are processed on 

board by the embedded computer, which sends, in real 

time, to the Base Station only a status vector.  However 

the Base Station can request from the robot either the 

latest image or a specified sub-region of the latest image 

in order to do epipolar calculations. Upon a successful 

match the Base Station provides the robot with better 

position estimates. The robot is continuously doing on 

board optical flow calculations, which are used to 

immediately react to potential collisions or to stay on the 

prescribed trajectory, when out of sight from the fixed 

camera. 

         

3.2 Software Architectures 

 A modular software architecture (Figure 3) is 

developed where different vision tasks are assigned to 

specialized modules. 

The images from fixed cameras are processed by Camera 

Module (CM) with a correspondence of one running 

module for each fixed camera. The CM is responsible for 

image pre-processing and tracking of moving objects. At 

every frame the CM broadcasts to the Situation Awareness 

Module (SAM) the status of each tracked object into a 

Tracking Message.   

 SAM maintains a map of the environment, robots, and 

non-robot animated entities (humans, pets, or other 

moving objects), and as much information as the system 

can gather. When a new moving object is detected SAM 

can request from CM sub-images of moving objects for 

deeper analysis and pattern recognition. A database (DB) 

of images for known or prior tracked objects is maintained 

for the scope of object recognition. 

 For each Robot a Robot Module (RM) is also 

running on the base station. The RM is in constant 

communication with the software running on the 

embedded computer on board of the robot which is called 

an Autonomous Robot Module (ARM). The RM is 

responsible for mission planning and epipolar localization 

by matching the image captured by ARM with images 

requested from the CM. Practically all the robot’s visual 

 

Figure 2. Major Components 
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processing and control software is distributed between 

base station (RM) and the mobile unit (ARM).   

 During a typical navigation sequence the RM 

interrogates SAM for a map of the grid between the 

current position and the target, and then it uses the 

Dijkstra algorithm to find the path with the following 

constrains; that the width along the path be at least a cell 

wider than the known width of the vehicle. Once the path 

has been selected, the RM downloads the navigation 

instructions into ARM and instructs SAM to keep 

providing real-time tracking information. The robot 

navigates along the prescribed path driven by a PID 

controller using the tracking information as feedback. 

During navigation it is possible that obstacles unknown to 

SAM may be encountered. For example a table that has 

never been moved from its place has been interpreted as a 

pattern on the floor when the grid was built. When 

approaching the table the optical flow on ARM detects it 

as an obstacle, the robot stops and relays the information 

to the RM. The RM can now map the object using 

epipolar geometry and send the information to SAM to 

update the occupancy grid. Then the navigation re-starts 

with a new path planning. 

 

3.3 Protocol 

 CMs use HTTP or raw TCP to acquire images from 

IP cameras at the camera's maximum speed (usually 5 to 

15 frames/sec.), for each frame each CM sends a Tracking 

Message to the SAM. The tracking message contains for 

each moving object: an object ID unique for all the 

systems, position and size of the images, estimated 

position/size in 3D, image and 3D estimated motion 

vector, and a status field indicated if this is a new tracked 

object, and a level of confidence in the tracking. 

 SAM can send to the CM an Extended Info Request 

for a given blob asking for extra info like the object 

histogram or texture descriptor. CM also honors a Blob 

Image Request from SAM by sending the image around 

the blob of interest and a binary mask to differentiate the 

blob body as tracked from its immediate surroundings. 

 The RM will send a periodic RobotStatus message to 

SAM informing it where the robot guidance software 

believes the robot is located and the degree of confidence 

for this belief, along with current status vector. If SAM 

determines that a RM is in an observed area but its 

position does not match any tracked blob SAM can ask 

RM to run a localization procedure.   

 The RM can send an Image Request message to a 

CM in order to get a sub-image to perform epipolar 

localization. The RM can also ask SAM for the tracking 

status of all the blobs in a specified area in order to match 

the movement as reported by the ARM with a movement 

of a blob and therefore identify the correct correspondence 

between a blob and the robot. 

 Once the RM is confident about its position 

matching a given blob, the RM can ask SAM to associate 

the robot to that blob allowing SAM to provide real-time 

updates of the robot position based on the tracking. 

 

3.4 Environment Model 

 SAM is required to keep a live map of the operating 

environment. The map is represented as an occupancy grid 

representing the floor. Objects and people are modeled as 

prisms or an assembly of prisms occupying a particular 

spot on the occupancy grid. Stairways will be modeled 

separately once we decide to go ahead with stairs capable 

robots, but for now they will just be represented as 

obstacles. The size of the grid cell is chosen to be about 

the size of the smallest object the robot is supposed to 

manipulate. For each object, besides the position and 

surface, a radius of uncertainty is maintained which is 

expressed in multiple cell sizes, because same objects are 

not visited closely by the robot causing uncertainty in the 

position to be higher than the actual cell size. Each object, 

movable or fixed, will have a unique id. The occupancy 

grid will maintain an id of the object located there while 

each object maintains the position cell of its central axis. 

Objects larger than a cell will be referenced by multiple 

cells in the grid. Each grid cell also maintains information 

about its color, texture descriptors, or a sub image of it. 

Various meta-data like hazards or roughness can be added 

as needed for future practical developments. 

 The objects will be represented as prisms with facets 

being elevated surfaces from a generator plane. More 

precisely for each surface we store the Euler Angles (φ, θ, 

ψ) defining the generator plane in which the elevation grid 

is located, the center of the elevation grid (x, y, z) and on 

each cell the height from the plane to the respective 

Figure 3. Software Modules 
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surface. Besides the elevation, each cell contains 

information about the color, texture or sub-image 

mapping. 

 To allow the researchers to understand the built 

model, as well as to improve parsing algorithms, an 

Engineering Console is being developed. This is an 

OpenGL 3D viewer being able to connect to SAM and 

receive the data model that SAM has built. The viewer 

allows navigation in the virtual environment representing 

SAMs model with basic keyboard and mouse controls. 

The data structures presented above can be easily 

translated in OpnGL by tessellating each cell of 

occupancy grid or object surface elevation map in two 

triangles and binding the image as an OpenGL texture on 

the tessellated surface. 

 

3.5 Objects Database 

 A robot mission may consist of going to a particular 

area and retrieving an object. Therefore besides 

localization we need object recognition abilities in order 

to be able to perform the task. A disk based object 

database is maintained where pre-scaled images of objects 

of interest acquired from various angles are stored; each 

object is being labeled not only with a name but with the 

last known location. 

 While the direct operation “search for object Z” can 

be accomplished by retrieving from database the set of 

features recorded for the named object and match it in the 

image it sees, a much more complicated problem is the 

reverse problem “label the known objects that are seen”. 

The reverse problem can arise in landmark based 

navigation where the robot needs to identify the location 

by recognizing the surrounding objects and landmarks. In 

direct problems one object has to be recognized from the 

objects the robot sees, in the reverse problem the robot 

still sees M objects and from them it has to recognize the 

X known objects from a set of N objects it has in its 

database. Moreover, based on the point of view the 

projections of an object may differ significantly and 

occlusions require the ability to handle partial views of 

each of the projections mentioned above. This is a 

complicated problem that needs a whole new set of data 

structures and algorithms.  We propose a three tiered 

database architecture modeled not dissimilar with the 

memory organization in a human. The first tier (short term 

memory) keeps in RAM only the objects in direct view. 

The second tier (mid-term memory) holds objects not 

currently acted upon but which were recognized in the 

current session. The second tier memory is stored on a 

disk while having some pointers kept into the RAM cache. 

The structure of data in the second tier memory is closer 

to the first tier in respect that it stores fragments of object 

images from multiple viewpoints. Because storing 

multiple views of an object is a space consuming method, 

the objects that have not been worked with in a long time 

and were not yet indexed may be “forgotten” to free 

space. This will require a dynamic self-organizing 

structure like a Splay-Tree, which brings to the top 

“memories” freshly accessed. For recognition from the 

first and second tiers we plan to elaborate on the work 

about Aspect Graphs done by Ulrich et al. [10], while 

Shape Masks presented in [11] are investigated as an 

alternative or an additional method. 

 The third tier (long term memories) will index the 

information from the second tier and delete them from it 

once indexed. The format of long term indexed data will 

be different from the second tier in order to save space. 

Therefore at this level no set of sub-images are kept but a 

more compact representation like Semantic Nets and 

Voxel based modeling [9] are looked upon.   

 The big challenge here is to find a Visually Indexed 

Data-Base system (VIDB) that can provide faster access 

the same way databases use indexes to accelerate access 

to records of interests by performing look-up in O(log(N)) 

time.  The object to be recognized is analyzed for a set of 

vectors of features, each vector of features is being 

encoded in a binary representation. The binary 

representation of each vector sampled at a few standard 

resolutions will form the Visual Index for a given pose of 

an object. From the image viewed by the robot a set of 

vectors is estimated and then each of them is searched for 

in the database to match the stored views. 

 The algorithm for data reduction and visual indexing 

is expected to be a very computational intensive task and 

therefore it will be an off-line algorithm working mostly 

during the periods when the rest of the system is idle, 

taking advantage of any spare CPU cycle for this job. This 

process may be looked at as being somehow similar to the 

action of dreaming in humans which may be used to sort 

out and “index” the quotidian experiences [20]. 

 

 

4  Challenges and Future Works 

 

 While epipolar geometry is a very powerful 

technique in practice, it is relatively hard to use especially 

in our environment where the distance and pose from the 

two cameras to the scene may vary widely. The feature 

matching can fail because the two cameras do not see the 

same scene or because of the encoding noise inherent to 

IP cameras (JPEG compression). To make the matter 

worse in the typical domestic or office environment carpet 

or furniture with repeating patterns are often used, this can 

trigger false localization by fooling the feature matching 

algorithm if the robot and fixed cameras overlook the 

same patterns in different places. To overcome these 

challenges we do not rely exclusively on epipolar 

matching but we use it only as a method for better 

localization when possible. 

 The pixilation due to encoding noise can easily be 

confused by the detection algorithm with moving objects 

fooling the tracking algorithm. To overcome this problem 

the tracking algorithm needs to be smart enough to figure 

out that this sort of movement is not compatible with a 
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contiguous trajectory required for moving objects, hence it 

must be noise.  

 The experiments performed with tracking algorithm 

showed that the positions of the detected blobs resulting 

from background subtraction are not accurate enough for 

navigation. To overcome this problem a Kalman filter is 

being attached to each tracked object to provide a sub-

pixel estimation of the position. For accurate navigation 

around objects, the edges of the objects must be precisely 

identified. For this we are currently experimenting with 

Watershed segmentation, where the object blobs are being 

eroded to generate the segmentation markers. 

 The biggest challenge in blob tracking we 

encountered is blob segmentation in less than ideal 

illumination. For example, when the platform vehicle 

(black with blue) moves farther away from the camera in 

front of a dark gray piece of furniture, in less than perfect 

lighting condition the Background Subtractor fragmented 

the vehicle blob into a set of unconnected blobs. To 

overcome this challenge we had to modify the data 

structures to allow for multi-blob objects, and we are 

experimenting with a fuzzy logic algorithm where every 

tracked object lay bids on various detected blobs located 

in the next predicted position. If geometry and fuzzy 

histograms are not enough to resolve the ambiguity 

beyond a reasonable doubt a fall back strategy employing 

feature matching will be employed. 

 Representing each room with its own occupancy grid 

can create some problems because of the fact that when 

the robot is in a position to see both rooms at the same 

time through the door, the map created by SAM may not 

be useful for object matching. Using a single occupancy 

grid for a large building with many rooms creates 

performance issues. We will be looking for a two level 

map with eventually overlapping regions in our future 

research.   

 The Visual Indexed database is by far the biggest 

challenge we have to solve in our future work. 

Decomposing an object in a region and representing the 

relationship between them into a semantic net combined 

with Ulrich et al. Aspect Graphs [11] is our best bet, but of 

course this may change as the research progresses. 
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