
Multi-Threaded Message Dispatcher Framework for

Mission Critical Applications

Marcel-Titus Marginean

Computer and Information Science

Towson University

Towson, Maryland, USA

mtm@mezonix.com

Chao Lu

Computer and Information Science

Towson University

Towson, Maryland, USA

clu@towson.edu

Abstract— The usage of well-tried software design patterns

and application frameworks is often encountered in Mission and

Safety Critical Applications development due to the high stakes

involved in the case of failures. To increase reliability, some

frameworks attempt to separate the implementation of business

logic and low level implementation details and move the latter

inside of framework-implementation in order to allow the

developers to focus as much as possible on the problem to be

solved while providing the necessary infrastructure into easy to

use API’s. In this paper we present a framework for message

processing which takes advantage of the newer C++11 features to

enforce separation of concerns, perform dead-lock avoidance,

and encourage unit testing.

Keywords—Design Patterns; Critical Application;

Multithreading; Message Dispatching;

I. INTRODUCTION

 To implement the House Hub and House Intelligence Unit

from sDOMO system presented in our previous papers [1, 2]

we designed a Multi-Threaded Message Dispatcher (MTM-

Dispatcher) framework to support Messages and sDOMO

Packet processing. The framework was designed to be

reusable for other applications that require message processing,

and will be offered as open-source in the upcoming release of

sDOMO reference implementation.

 Taking advantage of the lessons learned from other

engineers’ experience is the main driver for using well known

design patterns instead of “reinventing the wheel from

scratch” and running the risk of wasting time solving the same

problems and making the same mistakes. A whole set of

design patterns are well known in literature and we are

reviewing a few related with our work.

 Reactor Pattern [3] handles concurrent requests delivered to

an application, by synchronously de-multiplexing them within

the context of a single thread and delivering them to the

appropriate service handlers. The Reactor is a very influential

pattern and our MTM-Dispatcher can be viewed as a

multithreading extension of it.

 To handle concurrency, Monitor Object Pattern [4]

synchronizes executions to ensure only one method runs

within an object at any given moment in time. Active Object

Pattern [5] provides each object its own thread of control and

decouples method invocation from method executions. A

review of other very useful concurrency design patterns can be

found in [6].

 The Leader/Follower design pattern [7] addresses some of

the same concerns as in our Dispatcher framework, mainly:

Efficient de-multiplexing of handles, threads and preventing

race conditions. However not being purposely designed for the

advanced template metaprogramming abilities that are

available in modern C++ compilers, Leader/Follower pattern

is unable to perform some safety checks at compile time,

providing a strong separation of concerns and enforcing

discipline for data access to aid development of safety and

mission critical applications.

 In “Design for Verification” [8] the authors developed a set

of framework to aid the task of developing a system from

separately verifiable parts, in order to increase the reliability

of a system and therefore making it more suitable for mission

critical applications.

The core idea behind the design of this framework has been

the suitability for Safety and Mission Critical Application

development therefore attempting to aid with a few of the

Figure 1 Multiple Message Sources and Shared Data Talking

to One Message Processor

challenges encountered during application development:

Deadlock Prevention, Separation Of Concerns and Software

Testability.

II. PROBLEMS

 The problem of having to process messages coming in

concurrently from multiple devices is a typical occurrence in

software engineering and as presented in review, many design

patterns have been implemented to attempt to deal with it. The

most common approach has been the Reactor pattern which

serializes the messages into a queue and then handles them in

the context of a single thread. While Reactor is a highly

successful pattern it fails to take advantage of modern CPU’s

providing multiple cores.

 In the designs that handle the processing in the context of

multiple threads the critical section problem arises and the

programmers must provide synchronization methods to protect

the critical sections. While solving the critical section problem

another problem can be introduced, the risk of entering in

dead-lock where two or more threads are caught in a circular

wait.

 Having the software engineers constantly switch their

attention between the business logic and the implementation

details (for example the deadlock-prevention or validating

pointers) opens opportunities for more mistakes. The principle

of Separation of Concerns recommends separating clearly the

two, allowing the programmer to focus on and address a single

class of concerns at a time.

 Despite efforts in design and implementation, errors are

likely to slip in, and software testing is the most commonly

used way to detect them in order to eliminate errors. Unit

testing emerged as a very good testing strategy allowing small

units of the program to be independently put into a test

harness and exercised independently in a controlled way.

Unfortunately, unit testing is neither easy nor cheap when the

program was not been designed with unit testing in mind,

because usually each unit makes references to other units and

this increase in cascade makes good tests harnesses

notoriously hard to write.

III. PROPOSED SOLUTION

 The typical problem this framework addresses is the problem

of multiple devices sending data in messages toward a central

message processor (MP) which has to process the information

and eventually send messages toward the devices in response.

It addresses the problem of mutual exclusion and deadlock by

imposing a compiler-enforced discipline of accessing any

critical shared resource. In Figure 1, the main architecture is

presented.

 The devices are software components able to send messages,

the system accepts multiple devices of the same kind as well

as different kinds of devices. A “kind” of device is

characterized from the types of messages that it emits and

receives. Some devices can be just simple software

components either one way like a logger or two ways like a

database or some other type of data store. Since devices send

messages asynchronous from one another and some messages

can be just re-routed to other devices with little or no

processing, it makes sense for the message router and

processor to operate using multi-threading in order to make

best use of CPU cores and achieve higher throughput.

 Because the message processing may require access to

shared data, mutual exclusion has to be implemented in order

to avoid race-conditions, and whenever multiple threads and

mutexes are employed there always exists the possibility of

deadlock. To prevent this to happen, we use the C++ compiler

to disallow direct access from user code to Shared Data and

put the framework in charge of synchronization. This also aids

the programmer to focus on the problem to be solved instead

of synchronization details.

 As depicted in the sketch from Figure 2, the main entities of

the system are a set of message sources S1… Sn which

asynchronously produce Messages which the framework adds

into the Priority Queue. The Message Dispatcher owns one

or more thread which extracts the next Message (in the order

of priority) from the queue. Upon successfully validating a

Message, the Dispatcher looks-up all the Message Handling

Entries registered for this particular message and allocates the

list to a Dispatcher Thread. A Message Handling Entry

consists of a Message Handler Function (Handler 1() ...

Handler m ()) and a tuple of one or more references to Shared

Data Objects (D1... Dp).

 For each Entry, the Thread will lock the mutex associated

with each Data Object using the “partial ordering deadlock

Figure 2 Dispatcher Main Components

avoidance algorithm” as proposed by Dijkstra as a solution to

“Dinning Philosophers Problem”. Once all the resources are

acquired, the Dispatcher Thread calls the function handler

passing a reference to Data Objects as parameters to the

function.

A. Critical Application Support

The proposed design has a set of features to provide support

for development of applications that are vital for an

organization or system or for safety of people around.

1) Dealing with Race Conditions and Deadlock

Prevention

 The main goal in designing this framework was the ability to

allow multithreaded message processing while making sure

the access to shared resources would never result in a

deadlock situation that would make the system unresponsive

and unable to perform its mission critical role. The framework

implements a deadlock avoidance procedure that guarantees a

deadlock-free dispatching as long as the accesses to Data

Objects are non-blocking, i.e. implementing

request/completion asynchronous operations. The algorithm

for deadlock avoidance works as follows:

1. All Data Objects are made inaccessible from regular

user code using DataProtector template class, this

makes race conditions impossible since any attempt

to access a Data Object outside of the framework

control results in a compiler error.

2. For each Message that needs to be handled, one or

more function handlers must be declared and

registered with the Dispatcher.

3. Handler registration specifies for each Handling

Function the set of Data Objects that should be bound

to its parameters during a call.

4. When a Message is handled, the Dispatcher will lock

the Data Objects in the order of their unique locking

priority, avoiding the possibility of deadlock by the

partial ordering solution.

5. The references to Data Objects are retrieved by the

ExecCaller object created by the Dispatcher which

has a friend Relationship with DataProtectors, access

their embedded data and passes it to the Handler

Function as parameters.

2) Support for Separation of Concerns

 Separation of Concerns is a design principle in software

engineering that asserts the need to minimize the amount of

time, the mind of the programmer performs context switches,

like for example between high-level business logic and low-

level implementation details. According to psychology studies

constant context switches are a weak link in the process of

focus; allowing programming errors to slip through. The

presented framework design attempts to aid the programmer

into the task by taking a small set of tasks on its own and

enforcing others.

 The fact that messages are sequenced in a priority queue

guarantees that lower priority processing will not delay critical

messages from being handled. Once the software engineer

determined the priority of each message, either role-based or

by RMS, the framework will take care of handling the proper

task with the appropriate priority without further

programmer’s attention.

 Instantiating each of the Data Objects under the control of a

DataProtector prevents the programmer from accessing them

directly, forcing them to rely on the framework in order to

access each Data Object. This eliminates the need for the

programmer to care about Critical Section problem

outsourcing it to the framework. As a matter of fact, since all

Figure 3 Class Diagram Related to Safe Data Access

Figure 4 Class Diagram for Message Management

the handlers registered for a particular message are called

sequentially under the context of a single thread, this also

eliminates the need for the programmer who writes Message

Handler Functions to care about multithreading at all. From

the point of view of programmer writing handlers there is no

difference between the fact that a particular handling function

is called from the Multithreaded Dispatcher or just called from

a regular function into a mono-threaded program. All the

synchronization and deadlock avoidance procedures are

hidden inside the framework, “out of sight out of mind,” for

application programmers.

3) Support for Unit Testing

Having all shared Data Objects constructed under a

Protector, forces the programmer to declare the required shared

objects as parameters to the message handler function in order

to be provided by the framework. As a result, all message

handler’s functions are self-sufficient pieces of code that can

be tested individually in a test harness that just passes the

required parameters to the handler subject to testing. Because

the framework also takes care of all the multithreading and

synchronization issues hiding this aspect from the author of the

handler, all the message handler’s unit-tests can be performed

into a single-threaded easy to use environment.

B. Design Details

 Two interfaces serve as the base for the Data-Protectors.

LockableObjectInterface is the base for any class that the

MTM-Dispatcher class is supposed to lock before calling the

handler and releasing it after. DataProtectorInterface is a

template abstract class parameterized with a data type that will

be passed to the message handler function. The

DataProtectorInterface have two protected member functions

returning pointers to a LockableObjectInterface and the data

type used to instantiate the template.

 An auxiliary template interface

SelectiveDataProtectorInterface serves as the base class for

registering arrays of shared data-objects in order to pass to the

handler one of them based on some information from the

incoming message that is being processed.

 When a handler function is being registered, the references of

the classes extending DataProtector template class or

SelectiveDataProtectorInterface are being passed to the

registration procedure.

 The framework uses a friend relationship with the protectors

in order to access the methods that provide a pointer to data or

associated locking mechanism.

 The abstract class MsgSourceInterface is the base for all the

objects that will send messages to be handled by function

handlers. A message is a class inheriting an instantiation of

template Message with two integer parameters, CategoryID

and MessageID, and then defining their own data. Message

Sources have the ability to enqueue into the Dispatcher an

object of type MsgHandle which references an actual Message

that needs to be sent. When the Dispatcher dequeues a

message reference, it uses it to get access to the actual

Message via the method getMessage() from the

MsgSourceInterface. This two-step access (using a handle that

resolves to message instead enqueuing a direct pointer to the

message) has been implemented to address two important

problems: event cancellation and messages instantiated in

special memory segments.

 Event Cancellation is best understood considering a time-out

timer started when a request is launched and which calls a

time-out function if the answer has not yet been received in

time. If the response is received, the reception handler will

cancel the timer. However, if the queue is not empty when the

reply is received, the message is enqueued at the end of the

queue and until it will be served, it is possible that the time-

out event will also be enqueued to be executed later. Without a

two-step look-up, both reception and time-out handlers must

perform extra accounting steps to keep track of a particular

request/time-out pair since just canceling the event will have

no effect on the event being already enqueued as a message.

With a two-step look-up, when the answer handler is

processed, it cancels the timer and when the t/o event reaches

the execution state, the source will just return a null message

avoiding the time-out handler from being called, so event

cancellation is achieved without adding any external code

from the point of view of the application programmer, in

direct accordance with the Separation of Concerns principle.

 Dual step look-up also allows large messages to be kept in a

memory managed by the Message Source itself, which can,

for example, manage blocks of data in shared or non-uniform

memory blocks. When the look-up of the handle is performed,

the right block can be mapped into the process address space

and a pointer is returned. Enqueueing directly a pointer to the

memory would require the memory to be mapped early and

stay idle for the entire period the pointer is enqueued or it

would require data copy into process memory.

Figure 5 Class Diagram for Message Dispatching

 With every call to the template method registerHandler of the

MTM-Dispatcher a new DeferredCaller entry is added to the

map indexed on the pair CatID,MsgID. The DeferredCaller

entries holds the pointer to the function handler to be called

and references to the data protectors associated with the data

that needs to be passed to the function.

 The Dispatcher starts one or more dispatching threads. Each

thread runs a loop which will dequeue an MsgHandle and

from the owning message source a pointer to the actual

message is retrieved. If the resolved pointer is not null, each

DeferredCaller entry associated with this message is called

with the message. Beside the Message pointer, a pointer to the

DispatcherLocker object owned by every thread is passed

along to the call(…) method of the DeferredCaller. The

DeferredCaller uses the DispatcherLocker and the Functor it

holds to instantiate on the stack an ExecCaller functional

object. The ExecCaller performs object locking in accordance

to a partial ordering solution and then calls the actual function

handler with the values retrieved from the protectors.

 The rationale for having the intermediary ExecCaller

instantiated on the stack instead of allowing the

DeferredCaller itself to perform locking is to assure that the

same DeferredCaller can be simultaneously called from two or

more threads. The rationale as to why we want that is because

we have the possibility to register as handler parameter an

array of data objects from which one can be selected at

runtime based on the message content. If two messages

resolve to the same object, the locking mechanism will be

blocked and only one handler will be executed at a time,

however if the messages generates separate elements of the

array, the two handlers can execute simultaneously. Creating

the intermediate object ExecCaller on the stack helps solve the

problem in an elegant manner.

After all the handlers have been successfully called, the

dispatching thread releases the Message data with the source

and waits on the MsgHandler queue for the next message.

IV. TYPICAL USSAGE

Using the MTM-Dispatcher framework to implement a

Message Handling Application consists of a set of

standardized steps:

1. Defining the Messages that are being processed by

the application: The Framework defines messages as

parametric templates with two integer parameters,

named as CategoryID and MessageID allowing

flexibility in mapping the messages ID coming from

various device types.

2. Define all the structure of Shared Data Objects that

are required. The Shared Data usually is a C++ struct

element grouping together various pieces of data that

make semantic sense when associated from the point

of view of the business logic.

3. Write function handlers for each message, having as

the first parameter a reference to the Message class

and followed by references to all Shared Data

Objects that need to be accessed by the function

handler.

4. Instantiate Shared Data Objects inside a protector as

Protected Data Object variables.

5. Write Message Source Servers as Active Objects

inheriting MsgSourceInterface.

6. Instantiate Message Sources.

7. Register the handlers and the corresponding protected

Data Objects instances with the Dispatcher.

8. Call the method start() of the Dispatcher.

9. Call the start() method for all the Message Sources.

 It is possible for a Data Object to extend the

MsgSourceInterface in order to allow Messages to be posted

when certain conditions are met. As a matter of fact, most of

the Data Objects would probably be implemented this way

allowing a three step process that brings the Separation of

Concerns principle as “first class citizen”. More precisely,

message Handlers functions can be divided into three

categories: Incoming Handlers, Business Logic (BL) Handlers,

and Outgoing Handlers.

When an incoming message comes from an external

source, the set of Incoming Handlers will just receive the data

and unpack-it into the appropriate data objects. As a result of

changing the state of data objects, they emit various business

logic messages like posting an alert condition, requesting an

adjustment to another value, etc. These messages are handled

by the BL set of Handlers which implement domain specific

knowledge to assess and react to BL events. Either as a result

of processing BL or by timers, a set of Outgoing Request

Messages are emitted which are used by the Outgoing Handlers

to pack and send the data to external devices. The clear

separation between the operations of Handling External Data

and Business Logic processing allows different team members

to focus on their specific tasks reducing the cross-domain

coupling.

V. CONCLUSION AND RESULTS

 The presented framework has been used to rewrite the House

Hub from sDOMO project in order to allow scalable

processing of multiple devices once the original proof of

concept implementation reached it limits. It is being used also

in the implementation of House Intelligence Unit from the

same project. It is also evaluated for being used for some

support applications in unmanned aircraft industry.

 The framework implements unique features for mission and

safety critical applications being able to offer compile time

checking of errors in message registration, enforce the usage

of a deadlock avoidance protocol that guarantees the system

will not lock-up due to a programming mistake, and enforce

separation of concerns allowing the implementer to focuses on

the problem at hand instead of low level mutual-exclusion

problems. Because the framework uses handler registration,

messages and shared objects that can be easily defined at any

time MTM-Dispatcher framework is highly extensible and can

be successfully employed in projects that are envisioned to

need to scale up a lot in the future. The separation of concerns

implemented by this framework allows each handler to be

written as a standalone piece of code, avoiding coupling that

reduces the scalability. This aspect of enforcing stand-alone

handlers that are fully defined by their parameters, makes the

framework highly suitable for test-driven development which

is a practice highly regarded in safety critical applications.

 To assess the performance of the MTM-Dispatcher, a set of

tests have been run on a multiprocessor computer having 12

CPU cores. The main question to be answered by the

performance testing was if the new multithreaded dispatching

frameworks scale well with the number of dispatching threads.

The test employed 10 Message handlers, all of them

subscribing for the same message from a single message

source that has been implemented both as an Active Object

without the need to have the Dispatcher lock it during

dispatching of the message, and respectively as Data Object

requiring the Dispatcher to lock it for the duration of

dispatching. There were three tests run to assess the

performances.

Figure 6 MTM-Dispatcher Performance Graph (lower is

better)

 Test #1 had the handlers printing a message then idling for

the required amount of time, while Test #2 had the handlers

performing CPU intensive calculations for the same amount of

time. For Test #3 we used the same handler functions as for

Test #1 but the Source emitting the message to be delivered to

handlers was, as of this time, a Data Object which required the

Dispatcher to lock it therefore preventing other threads to run

on the same time. This is a degenerated case that transformed

the MTM-Dispatcher behavior in something similar with

Reactor framework. For each test we run the dispatcher 32

times with a number of dispatching threads from 1 to 32 with

the same workload each time.

 As can be seen from the graphic in Figure 6, for the tests #1

and #2 the amount of time required to terminate the work

decreased very fast until all the available CPU’s cores (12) has

been used by the Dispatcher. After that, the curve leveled as

expected. There were no differences between the behavior of

I/O and CPU intensive handlers, they took the same amount of

time to complete.

 By contrast, for the Test #3 where we used a Blocking

Source forcing all the threads to wait for the current one

holding the lock, the curve is almost flat as we would expect

also from the Reactor pattern which is using a single

dispatcher thread to handle all the processing. In theory, the

same way as the Reactor is using a single thread to perform all

the dispatching, in the degenerated case of MTM-Dispatcher

we would expect the curve to be absolutely flat regardless of

the number of threads employed.

 However; a closer look at the graph above shows that even

for this Test #3 there is a very small improvement in

performance with an increasing number of threads. The

explanation for this improvement is that besides the work

required to be performed by the handlers (on which the

resources are locked), the Dispatcher itself has to perform

some “house-keeping” overhead to manage the messages.

While in the case of the Reactor pattern this overhead is

executed on the same thread as the handler, in the case of

MTM-Dispatcher the overhead work performed before the

resources are locked and after they are unlocked takes place

on a parallel thread to the one currently holding the lock and

operating inside the handler. Therefore, even in the absolute

worst case scenario when due to resource management our

dispatcher degenerates into Reactor behavior, MTM-

Dispatcher still outperforms the Reactor due to the ability to

parallelize the overhead work.

 The Reactor design pattern [1] has been used for over 20

years to implement countless projects in mission critical

applications and will still be used for a long time for

application where mono-threading dispatching is preferred.

Today however, due to the advancements in C++ language, we

are able to provide a much better alternative that not only

outperforms it in every aspect but also improves the safety and

speed of code development by strong enforcement of the

separation of concerns.

 Future work to develop this pattern may include usage of

Readers-Writers locking pattern to optimize the dispatching

even further by allowing multiple handlers to run

simultaneously if they share only constant data objects. It is

also required some research work to investigate whether we

can allow multiple parallel handling for some message or not.

Another envision enhancement will be to export a Dispatcher

interface as an Data Object allowing handlers to safely modify

the dispatching table as needed at run-time. This enhancement

will increase the flexibility of the Dispatcher for Mission

(non-Safety) Critical applications. For Safety Critical

applications this is forbidden by rules and certification policies.

 The drawback to this Dispatcher framework is that it requires

advanced C++ techniques that are available only in the

compiler that implements the C++ 2011 standard and newer,

while the Reactor can be implemented in any older dialect of

C++ language and even in less evolved languages like Java, C

or Ada. There is, however, a follow-up effort to research Java

Reflection technique as a potential means to provide help in

porting a “light-weight” version of the Dispatcher to Java. We

are also planning to try exploring the potential for a “light-

weight” implementation in Python. A “light-weight”

implementation will not have parameter checking for handlers

at compile time on registration statement, but will throw a

runtime exception if a mismatched registration is encountered

at dispatching time. Therefore “light-weight” implementations

may be unsuitable for Safety Critical applications.

 As of this moment and in the foreseeable future, due to

required strong compiler support for templates, C++11 and

newer editions are the only languages in which a full-featured

(“heavy-weight”) MTM-Dispatcher framework can be

implemented. Once the adoption of C++11 became

mainstream in Mission/Safety Critical software development,

this drawback will no longer exist.

REFERENCES

[1] Marcel-Titus Marginean and Chao Lu, “sDOMO – A Simple

Communication Protocol for Home Automation and Robotic Systems”,
IEEE International Conference on Technologies for Practical Robot
Applications; May 11 – 12, 2015.

[2] Marcel-Titus Marginean and Chao Lu, “sDOMO in the context of
Internet of Things”, International Conference on Computer Science,
Technology and Applications; March 18 – 20, 2016..

[3] Douglas C. Schmidt, “Reactor – An Object Behavioral Pattern for De-
multiplexing and Dispatching Handles for Synchronous Events”, 1995.

[4] R. Greg Lavender and Douglas C. Schmidt, “Monitor Object - An
Object Behavioral Pattern for Concurrent Programming”, 1996.

[5] R. Greg Lavender and Douglas C. Schmidt, “Active Object – An Object
Behavioral Pattern for Concurrent Programming”, 1996.

[6] Ifran Pirali et al.,”Patterns for Efficient, Predictable, Scalable, and
Flexible Dispatching Components”. 7th Pattern Languages of
Programs Conference (PLoP '00) in Allerton Park, Illinois, August
2000. Addison-Wesley, 2000.

[7] Douglas C. Schmidt et al., “Leader/Follower A Design Pattern for
Efficient Multi-threaded Event Demultiplexing and Dispatching”. PLoP
2000, http://www.cs.wustl.edu/~schmidt/PDF/lf.pdf.

[8] Peter C. Mehlitz, John Penix, “Design for Verification, Using Design
Patterns to Build Reliable Systems”. Proceedings of the Sixth ICSE
Workshop on Component-Based Software Engineering., 2003.

