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ABSTRACT 
Tracking multiple persons / robots / pets and moving objects is an 
essential task for situation awareness in robot navigation and 
operation. It is also a relatively complicated problem of computer 
vision and multiple solutions have been proposed in literature. In 
this paper we are exploring a novel method of object tracking 
using computer vision by fusing multiple techniques into a single 
tracker implementation. The main goal of this method is to 
perform high confidence data associations as soon as possible in 
order to be able to provide tracking information to a moving robot 
in real time with attempts to minimize the CPU utilization for 
tracking whenever possible since the Base Station computer is 
being shared with multiple software modules.   
 

Categories and Subject Descriptors 

I.4.8 [Image Processing and Computer Vision]: Scene Analysis, 
Tracking.  
General Terms 
Algorithms, Design, Performance. 
Keywords 
Object Tracking, Robot Navigation, Kalman Filter, Segmentation, 
Feature Matching. 

1. INTRODUCTION 
An important component of the software architecture for domestic 
robot navigation presented in our previous paper [1] is the 
external vision (exovision) based Object Tracker located on the 
Camera Module (CM) on the Base Station. The Camera Module is 
a piece of software associated with each fixed camera overlooking 
the scene, and is responsible for image pre-processing and 
tracking of moving objects. At every frame the CM broadcasts the 
status of each tracked object in a Tracking Message, to the 
Situation Awareness Module (SAM). 

 

 

 The Tracking Message contains a list of tracked objects (referred 
to from now on as the Targets) with the specified location, 
movement vector, and the size of the bounding rectangle around 
the tracked object. Upon request from other components CM will 
provide a variety of information including a polygonal 
approximation of the Target, its Fuzzy Histogram, and even 
partial or full images. SAM integrates information received from 
multiple CMs and builds a 3D model of the environment in the 
form of a live-map. The model built by SAM is used to provide 
navigation and localization assistance to the robot.   
The role of the Object Tracker as part of the CM is to provide 
real-time tracking information of the objects “seen” by each fixed 

camera to aid the robot in determining its own position and to 
avoid collisions with other moving objects, persons, or pets.   
 
The main problem with the tracking operations is Data 
Association, i.e. if at the moment t we are having a s et of N 

targets  , and at moment t+dt we detect M blobs
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Fig. 1. Software Architecture Overview 
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, the problem consists of determining a set of 

P pairs such that a p air have 
the meaning that the target i at t moved at the position where the 
blob j has been detected at the moment t+dt. Once an association 
has been made the position and other information about the target 
are updated with the new data acquired from the new detection 
and then we can talk about the target i at the moment t+dt.  A 
Track is defined as a sequence of consecutive positions occupied 
by a target during its life time, i.e., the ordered sequence  

( )tk
i

t1
i

t0
ii T,,T,T=τ ... with t0 and tk dtk+t0=tk ⋅

respectively being the moment when a target has been taken into 
account (target initialized) and removed from the tracking 
accounting (target destroyed).    
The most common tracking methods are based on a variation of 
Multiple Hypothesis Tracking (MHT) [2] developed originally for 
RADAR by Donald Reid in his seminal paper from 1979 and 
adapted by later researchers for tracking using computer vision 
[3]. While deeply rooted in theory of probabilities MHT also 
needs to accumulate a r elative lengthily history before it can 
decide with confidence that a p articular detected signal can be 
associated with a previously detected one. As a result MHT based 
trackers may exhibit a delay that is less than desirable in real-time 
tracking.  
A background subtraction and segmentation method has been 
presented in introductory material in [4] and has been used by [5] 
for tracking vehicles on a highway,  while an algorithm based on 
direct searching and failure recovery using histogram matching in 
HSV color space has been presented in [6]. The grouping feature 
on hierarchical levels and using simulated annealing to find 
optimal configurations at object level has been presented in [7]. 
The Lucas-Kanade method for tracking has been used in [8] 
taking advantage of dedicated hardware to perform a 
computationally intensive task while in [9] it has been combined 
with Histogram of Oriented Gradient based detection. 

2. METHOD 
We took a multistage approach to the problem by generating a set 
of “one to many” hypothesis with association between Targets 
and Blobs and later refining them in subsequent steps using 
various image processing and data association methods.     
The main program flow is given in Fig. 2. After the image capture 
background subtraction is performed using the OpenCV’s class 
BackgroundSubtractorMOG which uses a G aussian Mixture 
Model of the background, the result of the subtraction is a binary 
image representing the modified foreground as a set of blobs. The 
contours of blobs are found and an array of data structures is built 
holding, for each blob, the position, area, bounding rectangle and 
an RGB space Fuzzy Histogram. The data structure part of this 
array will be referred from now on a s a Blob. The histogram is 
built from the RGB values of the pixels inside the found contours 
providing an easy way to compare the visual aspect of two blobs.  
A second array of data structure called Targets is used to keep 
information about detected objects. Each Target contains a 
Kalman filter used for tracking the movement, a list of associated 
blobs and trajectory history.  On every frame, each Target uses the 
Kalman filter to predict the expected position in the new frame 
then it lays a claim on the newly detected blobs that may be 
located around the expected position. A claim, named in code as a 
Hypothesis, associates one Target to one or many Blobs and 
creates a confidence score.  
Based on the prediction from the Kalman filter on each step an 
Expected Bounding Rectangle (EBR) of the target in the next 
frame is calculated and all the blobs intersecting the Expected 
Bounding Rectangle are selected to be part of the hypothesis for 
this Target.  
Because with each Kalman filter there is an uncertainty in 
location, a b lob can intersect more than one EBR resulting in an 
ambiguous Hypothesis. The next steps are dedicated to refine the 
confidence and provide hypothesis disambiguation. 
 On the confidence refining step we attempt to eliminate the 
claimed Blobs by a T arget that are not grouped together close 

While (true){ 
    capture Frame 
    Background Subtraction 
    extract Contours,  build Blob Array   
    for each (existing Target){ 
          predict next position and uncertainty using Kalman filter 
          create a Data Association Hypotheses  
    } 
    Attempt to disambiguate Hypothesys array using{ 
         Fuzzy Histogram Matching 
         Area Matching           
         Lucas-Kanade Optical Flow Matching when needed 
      } 
    Pick unambiguous hypothesis having confidence > treshold1  
    Pick ambiguous hypothesis having confidence > treshold2 
while no contender exists with confidence > threshold3  
    Run Second Chance Tracking Algorithm  
    Attempt Target Breaking and/or Splicing 
    form pairs from Leftover Blobs in current & last frame 
    assign score to each pair based on { 
         Fuzzy Histogram Matching 
         Area Matching  
         Lucas-Kanade Optical Flow Matching 
     } 
    Create new Targets from pairs whith score > threshold1  
    save all unmatched Blobs for next frame Leftovers  
      for (all unmatched Targets){ 
           increase the uncertainty rectangle & increment age 
           if (trajectory took them out of frame or spliced) delete it 
           if (age > age_treshold) delete it 
    } 
    for(all matched Targets){  
          set age to 0 
          update Kalman filter position and uncertainty equation 
    } 

Fig. 2. Main Program Flow 
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enough to form a single object. For some Hypothesis that will also 
result in disambiguation, however the next steps are purposely 
performed to eliminate any remaining ambiguities.  
The first attempt of disambiguation employs Fuzzy Histograms. 
For each blob claimed by more than one target a score is 
calculated comparing the histogram of the ambiguous blob with 
all the blobs previously associated with a target in the previous 
frame. The score from histogram matching is combined with a 
score calculated from the matching the area of the blobs in 
question.  T he weight multiplied with the area score is much 
smaller than that of the Fuzzy Histogram score because the area 
can vary due to occlusions much steeper than other visual 
characteristics. 
For all the ambiguous claims that fell bellow a co nfidence 
threshold and were not picked yet, the Lucas-Kanade optical flow 
tracking is used to update confidence in the claims and a second 
run of the matching algorithm is used to pick Target with Blobs 
pairs based on the newly updated confidence.   
The Second Chance Algorithm investigates the possibility that the 
association between Target and Blobs has not been possible, 
because multiple blobs are too close together to be distinguished 
from a bigger one. If this is found to be true, the position of the 
Target is updated using an estimated position based on L ucas-
Kanade matching. 
The Target Splicing Algorithm investigates the possibility that 
unassociated Targets might been just fragments of a bigger Target 
that were tracked individually because of partial occlusions and 
now their blobs have merged. The Target Breaking Algorithm 
looks at the targets whose new bounding rectangle grew much 
faster than the sum of areas of the associated blobs. It attempts to 
find targets that were mistakenly associated with blobs moving in 
different directions than the rest of the Target and removes them 
from it.   
All the unmatched Blobs in the current frame up to this point are 
compared against all unmatched blobs from the previous frame 
using both Fuzzy Histogram and Lucas-Kanade Sparse Optical 
Flow. The good pairs are used to initialize new Targets. Any blob 
that has not been matched up to this point becomes part of the list 
used to initialize targets in the next frame. While this is similar to 
the MHT method, it is important to notice that we never keep 
more than a single frame of Leftover Blobs for matching therefore 
avoiding the exponential growth of hypothesis specific to MHT. 

3. TARGET MODELING 
Each Target contains a Kalman Filter used to model and predict 
the movement of the targets in time. The Kalman state equation: 
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is the standard equation for a body in motion in 2D space without 
a control signal. The Kalman filter is used in a predict / update 
cycle: On every frame the filter predicts where the new position of 
the object should be and if the center of a blob is found within an 
expected rectangle around the predicted position, a  l evel of 
confidence is associated with this prediction and the filter is 
updated with the new measurement. The expected rectangle center 

is provided by the Kalman filter while the size of it is provided by 
a confidence equation and previous detected bounding rectangle 
of all the Blobs that are part of the Target. At every updated step, 
the distance between the predicted center and the real center is 
calculated and the uncertainty in position is updated using the 
exponential averaging,  
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where the vector [dx dy] is the distance between predicted and 
measured centers, while the resulting “sz” vector is the size of the 
Uncertainty Rectangle.  
The Uncertainty Rectangle expresses the uncertainty of the 
location of the predicted center of the Target in the next frame and 
is used to calculate the Expected Bounding Rectangle (EBR) of 
the next predicted position. More precisely if the Target currently 
has a bounding rectangle TBR, EBR is going to be the rectangle 

having: 
( )

( )TBRszTBRsz

1t+t+

height+y,width+x=
y,x=center

size
1

. 

 

Fig. 3. Target Blobs, Uncert Rect and EBR 

Beside the position and location uncertainty, a T arget object 
contains the last measured area, bounding rectangle and a f uzzy 
histogram of all the blobs associated with the Target in the last 
frame. Both of them are used to calculate the confidence in a 
match. Given the At and Ab, the area of the Target and all the 
considered Blobs respectively the confidence in matching by area 
is calculated as: 

( )
( )AbAt,max

AbAt,min=cA .                                     (3) 

 
The fact that each Target can be associated with more than one 
Blob allows us to handle Target fragmentation that is occurring 
when a Target passes in front of background spots having similar 
color and texture as the Target, or when it is partially occluded by 
small objects in front of it. Since a Target needs to have a w ell 
defined center in order to be used in the Kalman filter calculation 
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and determination of EBR, the center of a multi-blob Target is 
calculated as in formula (4) where xi, yi and ai are the coordinates 
and respective the area of a blob composing the Target. 
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Another type of problem arises when two targets come very close 
together, and their blobs generated by background subtraction 
forms a single bigger blob. If the conjoined blob is part of the two 
already initialized targets, one of them is going to lose tracking, 
then an increase of its uncertainty rectangle will follow. When the 
Targets separate the matching algorithms will find the blob within 
its (very large now) EBR and usually Lucas-Kanade and other 
matching functions will be able to correctly assign the blob back 
to the right Target. 
A much more difficult problem arises when a new object with a 
color close to an existing Target and having a s ize bigger than it 
enters the Target’s EBR. The new object fails to initialize as a 
new target and will be adopted by the existing one, resulting in 
false tracking. When the new blob is much bigger than the 
existing one, the only partial solution we have at this moment to 
this problem is to avoid some false tracking with much bigger 
objects by imposing a restriction that we will not disambiguate an 
hypothesis that makes a given blob to grow 2 times or more unless 
the two subsequent blobs overlap. However an object that is just 
marginally bigger than the existing Target and that has a relatively 
close color can still generate false tracking. This remains an open 
problem as of this moment. If the new object is smaller than the 
target, the algorithm will stay fixed with the current Target when 
they split and the problem does not arise at all. 
 

4. TARGET LIFE MANAGEMENT 
New Targets are created from the “LeftOver Blobs” i.e., from the 
Blobs that were not assigned to any existing Target by the end of 
the frame processing. At the end of each frame, all left-over Blobs 
are paired with all the leftover Blobs from the previous frame and 
then the pairs are refined consecutively by Fuzzy Histogram 
matching, area matching and Lucas-Kanade matching. The best 
matching pairs over a certain threshold are selected to initialize as 
new Targets. 
Each Target keeps a frame number with the value of the last frame 
when a p osition updates i.e. a successful matching has taken 
place. Using the saved frame number and the number of the 
current frame each Target has a calculated Age which is defined 
as the number of frames passed from the last successful update. A 
Target that failed to be updated for one or more frames is called a 
Lost Target. The age of a T arget is directly correlated with the 
uncertainty in position. After a successful update the size of 
uncertainty rectangle is calculated as described above. For a lost 
target the size of the uncertainty rectangle is each frame until its 
size equals frame size.  

When a L ost Target ages over a cer tain limit, the Target is 
eliminated from the array of active Targets, this is a Target being 
destroyed. If the same object is detected later, it will be 
reinitialized as a n ew Target and unfortunately all the previous 
trajectory information will be lost.  
A Target is also destroyed when it is  lost and the projected 
trajectory is determined to be out of the frame. In this case we do 
not have to wait for the maximum age before Target elimination.  
When a T arget is lost while its EBR is intersecting another 
Target’s EBR the Target is marked as occluded. Occluded Targets 
are permitted to reach an older age before they are removed from 
the system.  Active research is currently being done to an 
algorithm to detect occlusion with fixed objects (non Targets) 
from the environment that are located between the Targets and the 
camera. 
Finally a target that is declared to be Spliced into another by the 
Breaking and Splicing algorithm is also destroyed immediately to 
avoid generating false hypothesis. 

5. FUZZY HISTOGRAM 
Fuzzy Histograms (FH) are used as a fast method to increase 
confidence that a particular blob located within the expected 
rectangle predicted by the Kalman Filter is the tracked object. For 
each detected Blob a Fuzzy Histogram is calculated automatically 
when a Blob object is created from a detected contour. Whenever 
a Blob is assigned to a Target, the Blob’s main data including the 
Fuzzy Histogram is carried inside the Target. The disambiguation 
algorithm for a Blob claimed by two or more Targets first makes 
use of the FH for a quick comparison. FH is also used as the fast 
way to filter away candidate pairs used for Target initiation.  
   

Fig. 4. Fuzzy Histogram Membership Function 

  
Unless other work is done with FH we are not converting the 
RGB color space to HSV space, but we are using a t hree 
dimensional histogram for each color component of RGB space 
while also using a much larger interval between bars.  That is, we 
are using only 4 t o 6 bars for each color component and we 
normalize the values of the histogram into the interval [0, 1] to 
make it independent of the number of pixels.  While this approach 
is more sensitive to changes in brightness it is also more robust in 
matching variation in color and is faster.  
For updating FH with pixel values we are using a trapezoidal 
membership function allowing for small variation around the main 
histogram bars, as shown in Fig. 4. If the pixel value is falling in 
the collar C vicinity of the histogram bar then only the given bar 
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is updated, otherwise both bars bounding the pixel will be updated 
proportionally with the distance from the pixel to the neighboring 
bar collars. Comparison of two histograms A and B are done by 
returning a matching score calculated according to the formula (5) 
where r, g, b are the normalized values for Red, Green and Blue 
respectively and N is the number of bars in the histogram. 
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6. LUCAS-KANADE TRACKING 
The LK method provided by the OpenCV library implements a 
sparse iterative version of the Lucas-Kanade optical flow with 
pyramids. This function is used to find a set of matching features 
(corners) in two consecutive images in order to increase the 
confidence that the object located around a detected Blob is a 
match for a given Target or the previous frame Blob.  

If Fuzzy Histogram and Area matching methods did not provide 
enough accuracy to unambiguously pick or reject all the generated 
hypotheses we use an implementation of Lucas-Kanade method to 
increase the confidence in a particular hypothesis. 
Because LK calculations are CPU intensive we are taking two 
major optimization in using it. First, we use LK only when it is  
impossible to disambiguate a Hypothesis without it, i.e. only after 
using Fuzzy Histogram and Area matching, if we still don't have a 
clear cut on the set of data association hypothesis. Second, we are 
not calculating LK optical flow on full size image but we are 
cropping sub-images around the Blobs and the Target of interest, 
and apply the algorithm for LK matching only on the selected 
sub-images as seen in Fig. 5. 
To perform LK matching we select 2 images with a size a b it 
larger than the maximum size of bounding rectangles of both 
Target and Blob(s) and on the Target image detect Shi-Tomasi 
features. We retain for matching purpose only those features that 
are located either inside or at the borders of the binary masks of 
the blobs that are part of the Target.  

 
Fig. 5. LK Cropped Window and Mask 

Then we calculate the vector of matching features using the 
Lucas-Kanade optical flow method. The returned matching score 
is the number of features detected on the second image divided by 
the number of the featured that were passed to the matching 
algorithm, i.e. located inside or at the border of the Target’s blobs 

in the first image. The procedure is illustrated in pseudo-code in 
Fig. 6. 

7. HYPOTHESIS MANAGEMENT 
For each frame, the Targets already tracked will lay claims to all 
the Blobs detected by the subtraction of current image from the 
Gaussian Mixture Model of the background. Each claim is called 
an Hypothesis and it is  a triplet {TargetId, set<BlobId>, 
confidence}.  The set of Blobs in the hypothesis are all the blobs 
that intersects the EBR of the Target. It is quite possible at this 
point that if two or more Target EBR's intersect the same Blob, 
then it will be assigned to multiple hypotheses. This is called an 
Ambiguity and it is the job of the Ambiguity Resolving Algorithm 
to try to resolve them. 
The original confidence associated with a hypothesis is calculated 
based on the size of the Uncertainty Rectangle calculated with 
formula (2). The bigger the Uncertainty Rectangle the smaller the 
confidence that is associated to that hypothesis when the claims 
are laid. 

Ambiguity Resolving Algorithm will list all the Hypotheses that 

share one or more Blobs and for each shared Blob a score is 
calculated based on Fuzzy Histogram and Area. The common 
Blob is then assigned to the clear winner.  
To resolve ambiguities that persist up to this moment the MSER 
[10] segmentation is used to attempt to separate regions that may 
belong to different objects but are so close together that their 
movement blobs merged. Like previous algorithms discussed 
above, the MSER segmentation is performed only on a sub-image 
cropped from a rectangle drawn around the blobs of interest. Then 
a new matching score is recalculated on the segmented image to 
identify the “winning bid”. 
If there is not a clear winner (i.e. having a score with at least 20% 
higher than the next contender) and if the size of the Blobs in 
question are over a minimal size required for LK to provide 
meaningful results, Lucas-Kanade matching is employed to 
update the confidence.  After a particular blob has been removed 
from a multi-blob Target the confidence is re-initialized at the 
value resulting from EBR size and updated back with the score 
from FH and Area for the remaining Blobs. LK is not used again 
at this point until required because of the remaining ambiguities. 
The confidence in the hypothesis is never assigned from scratch 
but is updated from the previous one based on formula: 

   

lkMatchingScore(Target, Blob){ 
    rectSz=max(TargetRectSz, BlobRectSz)+SmallBorder 
    tgtImg=ImageAroundTarget(rectSz); 
    blbImg=ImageAroundBlob(rectSz); 
    mask=binaryImageOf(AllBlobsInTarget) 
    goodFeaturesToTrack= Shi-Tomasi(TargetRect) 
    usedFeature =  goodFeaturesToTrack & mask 
    resFeatures=calcOpticalFlowPyrLK(tgtImg, blbImg, 
usedFeatures) 
    return count(resFeatures)/count(usedFeatures) 
} 

Fig. 6. LK  Tracking Procedure 
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where Confidence is the Confidence already assigned to the 
hypothesis and score is the result from the last test performed. The 
alpha coefficient is dependent of the level of trust on the particular 
test. The value for alpha is small for Area match because the area 
of a detected blob can vary widely due to occlusion, and for FH 
and LK match which have proved to provide high quality results. 
There are two methods for picking a hypothesis in order to 
perform data association between Targets and Blobs: 
Unambiguous picking and Ambiguous picking. 
Unambiguous picking is the method of first choice. We select a 
hypothesis with a confidence over a certain threshold such that no 
Blobs associated with this hypothesis are claimed by any other 
hypothesis. It is employed early on a fter just FH and Area 
updates. If ambiguity persists another attempt for Unambiguous 
picking is attempted after the LK update. 

Ambiguous picking is used as the solution of last resort before 
labeling all the remaining Blobs as leftover and resort to Second 
Chance Algorithm.  Ambiguous picking selects a hypothesis with 
confidence above a given high-threshold that no other competing 
hypothesis containing a Blob shared with this one have a 
confidence over a low-threshold. All the hypothesis that were not 
accepted by the Ambiguous picking will be discarded since no 
further Hypothesis processing will happen after this point. 
 

8. SECOND CHANCE ALGORITHM 
The Second Chance Algorithm assumes that matching between 
the Target and Blobs failed because either multiple Blobs are 
located too close for the Background Subtraction and 
Segmentation to differentiate between them; or because the Target 
took a movement incompatible with the Kalman Filter prediction. 
This latest case can happen for example when a b all hits a wall 
and the trajectory diverge significantly from what Kalman Filter’s 
state equation can handle. The Second Chance Algorithm will use 
the Search Rectangle defined as the rectangle containing the 
Target if it would move from the previous known position at what 
is assumed to be the maximum speed.  More precisely, if the last 
confirmed position of the target center was (x, y) and the Target 
was contained into a rectangle with dimensions (w, h) the Search 
Rectangle is centered at (x, y) and has dimensions: 
( ) ( )dtvY+hdt,vX+w=sHsW, ⋅⋅⋅⋅ 22 ,  (6) 

where vX, vY are the maximum expected speed (in pixel / 
second) for a T arget on the respective coordinates and dt is the 
duration of a frame.   
Here the algorithm makes use of innate knowledge about the 
environment, in the form of a function provided by the Settings 
class which based on the position and size of an object will 
estimate a maximum speed expected for that object. The method 
assumes that small blobs are farther away while very large blobs 
are closer to the camera, and returns an expected maximum speed 
for each Blob. This expected maximum speed is used in the 
calculation of the search rectangle as described above. 
The Second Chance Algorithm relies on br ute-force Lucas-
Kanade matching to find the image of the last known Target into 
the Search Rectangle. At this point we may not have 
distinguishable Blobs to update the tracking based on their center. 
To update the Kalman filter with new position estimate E(xE,yE) 
we first calculate the center of mass of the LK matching points in 
the new frame C2(x2c, y2c) and in the previous frame C1(x1c, 
y1c), then we calculate the point E such that the offset from E to 

C2 is the same as the offset from L to C1, L(xL,yL) is the 
previous known position. 
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9. CONCLUSIONS 
The tests we run showed our method to be able to track two RC 
vehicles and a person walking inside a room using a IP camera 
mounted at the corner of a room near the ceiling. The camera 
provided 640x480 JPEG images accessible via HTTP with an 
average frame rate of 5 frames a second.  
During the experiments it w as noticed that our optimization 
worked as expected. While tracking only one or two vehicles the 
LK matching algorithm is very rarely called for over 92% of the 
time while the tracking has been performed exclusively with FH 
and Area matching alone. Even small occlusions are being 
resolved without the need to invoke LK in over half of the 
instances.  
For example while tracking a s ingle vehicle alone for a duration 
of about 800 frames, a single invocation of LK matching has been 
performed when the RC car took a semi-circle at high speed. With 
two vehicles LK is being invoked mostly when vehicles EBR 
intersects. 
Bringing a person in the scene changes things radically due to 
much larger size of the person and more fluid changes in shape. 
Due to severe occlusions LK is being invoked around every other 
frame when the persons walk in front or in the back of the other 
targets.    
The experiments showed that it is much easier to track vehicles 
than persons. Vehicle tracking has been showed to recover very 
easily from occlusions, while tracking a person occluded by fixed 
objects often fails when the person came back into the view, 
creating spikes in CPU usage. The low frame rate provided by the 
IP camera is another source of problems for tracking the person. 
Often the person is able to turn fast enough into a frame such that 
the view is sideways while we have a front view in the next frame 
and LK matching fails to find enough corresponding points. A 
better IP camera capable of higher frame rates is expected to 
allow improvements in human tracking.  
For performance comparison, a video 1100 frames @ 640x480 
has been recorded to a file allowing us to run the algorithms 
without any network latency into a repeatable manner. We run the 
measurements on a  Pentium E5200 @ 2.50GHz and compared 
MP-Tracker performance against Raw Lucas-Kanade Optical 
Flow with 400 S hi-Tomasi points distributed across all the 
images. 
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Table 1. Performance Comparison Summary 

 MP-Tracker Raw LK OF 

Min 33 ms 114 ms 

Avg 39.4 ms 121.5 ms 

Max 289 ms 171 ms 

The experiment shows that on average, the MP-Tracker is about 
three times more efficient than Raw Lucas-Kanade Optical Flow 
calculation across the whole image. The spikes observed in MP-
Tracker coincide with the person walking relatively close to the 
camera occluding both vehicles. In that case the MP-Tracker 
lunches the MSER segmentation and restarts LK matching 
afterward to resolve remaining ambiguities. 

 
                        Fig. 7.  Performance Measurement 
Active research is being done to solve this set of problems with 
person tracking by exploring contour tracking and hierarchical 
region grouping an idea inspired from [7].  A n alternative idea 
that is in research as of this moment is the ability to perform 
Target merging when two or more Targets exhibit trajectories that 
can be interpreted with high confidence as a perspective 
projection of parallel tracks. In the main program flow, as shown 
in Fig. 2, this is referred as the Splicing part in Target Breaking 
and Splicing. 
However, the fact that the average time for processing is below 
50ms allows us to provide real-time tracking information for 

multiple objects while running multiple trackers connected to 
separate cameras on the same multi-core computer on the Base 
Station. 
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