
A Multi-Paradigm Object Tracker for Robot Navigation
Assisted by External Computer Vision

Marcel-Titus Marginean
Towson University

8000 York Rd, Towson
MD 21252, USA

mtm@mezonix.com

Chao Lu
Towson University

8000 York Rd, Towson
MD 21252, USA

clu@towson.edu

ABSTRACT
Tracking multiple persons / robots / pets and moving objects is an
essential task for situation awareness in robot navigation and
operation. It is also a relatively complicated problem of computer
vision and multiple solutions have been proposed in literature. In
this paper we are exploring a novel method of object tracking
using computer vision by fusing multiple techniques into a single
tracker implementation. The main goal of this method is to
perform high confidence data associations as soon as possible in
order to be able to provide tracking information to a moving robot
in real time with attempts to minimize the CPU utilization for
tracking whenever possible since the Base Station computer is
being shared with multiple software modules.

Categories and Subject Descriptors

I.4.8 [Image Processing and Computer Vision]: Scene Analysis,
Tracking.
General Terms
Algorithms, Design, Performance.
Keywords
Object Tracking, Robot Navigation, Kalman Filter, Segmentation,
Feature Matching.

1. INTRODUCTION
An important component of the software architecture for domestic
robot navigation presented in our previous paper [1] is the
external vision (exovision) based Object Tracker located on the
Camera Module (CM) on the Base Station. The Camera Module is
a piece of software associated with each fixed camera overlooking
the scene, and is responsible for image pre-processing and
tracking of moving objects. At every frame the CM broadcasts the
status of each tracked object in a Tracking Message, to the
Situation Awareness Module (SAM).

 The Tracking Message contains a list of tracked objects (referred
to from now on as the Targets) with the specified location,
movement vector, and the size of the bounding rectangle around
the tracked object. Upon request from other components CM will
provide a variety of information including a polygonal
approximation of the Target, its Fuzzy Histogram, and even
partial or full images. SAM integrates information received from
multiple CMs and builds a 3D model of the environment in the
form of a live-map. The model built by SAM is used to provide
navigation and localization assistance to the robot.
The role of the Object Tracker as part of the CM is to provide
real-time tracking information of the objects “seen” by each fixed

camera to aid the robot in determining its own position and to
avoid collisions with other moving objects, persons, or pets.

The main problem with the tracking operations is Data
Association, i.e. if at the moment t we are having a s et of N

targets , and at moment t+dt we detect M blobs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
RACS’14, October 5–8, 2014, Towson, MD, USA.
Copyright 2014 ACM 978-1-4503-3060-2/14/10 …$15.00.

Fig. 1. Software Architecture Overview

88

, the problem consists of determining a set of

P pairs such that a p air have
the meaning that the target i at t moved at the position where the
blob j has been detected at the moment t+dt. Once an association
has been made the position and other information about the target
are updated with the new data acquired from the new detection
and then we can talk about the target i at the moment t+dt. A
Track is defined as a sequence of consecutive positions occupied
by a target during its life time, i.e., the ordered sequence

()tk
i

t1
i

t0
ii T,,T,T=τ ... with t0 and tk dtk+t0=tk ⋅

respectively being the moment when a target has been taken into
account (target initialized) and removed from the tracking
accounting (target destroyed).
The most common tracking methods are based on a variation of
Multiple Hypothesis Tracking (MHT) [2] developed originally for
RADAR by Donald Reid in his seminal paper from 1979 and
adapted by later researchers for tracking using computer vision
[3]. While deeply rooted in theory of probabilities MHT also
needs to accumulate a r elative lengthily history before it can
decide with confidence that a p articular detected signal can be
associated with a previously detected one. As a result MHT based
trackers may exhibit a delay that is less than desirable in real-time
tracking.
A background subtraction and segmentation method has been
presented in introductory material in [4] and has been used by [5]
for tracking vehicles on a highway, while an algorithm based on
direct searching and failure recovery using histogram matching in
HSV color space has been presented in [6]. The grouping feature
on hierarchical levels and using simulated annealing to find
optimal configurations at object level has been presented in [7].
The Lucas-Kanade method for tracking has been used in [8]
taking advantage of dedicated hardware to perform a
computationally intensive task while in [9] it has been combined
with Histogram of Oriented Gradient based detection.

2. METHOD
We took a multistage approach to the problem by generating a set
of “one to many” hypothesis with association between Targets
and Blobs and later refining them in subsequent steps using
various image processing and data association methods.
The main program flow is given in Fig. 2. After the image capture
background subtraction is performed using the OpenCV’s class
BackgroundSubtractorMOG which uses a G aussian Mixture
Model of the background, the result of the subtraction is a binary
image representing the modified foreground as a set of blobs. The
contours of blobs are found and an array of data structures is built
holding, for each blob, the position, area, bounding rectangle and
an RGB space Fuzzy Histogram. The data structure part of this
array will be referred from now on a s a Blob. The histogram is
built from the RGB values of the pixels inside the found contours
providing an easy way to compare the visual aspect of two blobs.
A second array of data structure called Targets is used to keep
information about detected objects. Each Target contains a
Kalman filter used for tracking the movement, a list of associated
blobs and trajectory history. On every frame, each Target uses the
Kalman filter to predict the expected position in the new frame
then it lays a claim on the newly detected blobs that may be
located around the expected position. A claim, named in code as a
Hypothesis, associates one Target to one or many Blobs and
creates a confidence score.
Based on the prediction from the Kalman filter on each step an
Expected Bounding Rectangle (EBR) of the target in the next
frame is calculated and all the blobs intersecting the Expected
Bounding Rectangle are selected to be part of the hypothesis for
this Target.
Because with each Kalman filter there is an uncertainty in
location, a b lob can intersect more than one EBR resulting in an
ambiguous Hypothesis. The next steps are dedicated to refine the
confidence and provide hypothesis disambiguation.
 On the confidence refining step we attempt to eliminate the
claimed Blobs by a T arget that are not grouped together close

While (true){
 capture Frame
 Background Subtraction
 extract Contours, build Blob Array
 for each (existing Target){
 predict next position and uncertainty using Kalman filter
 create a Data Association Hypotheses
 }
 Attempt to disambiguate Hypothesys array using{
 Fuzzy Histogram Matching
 Area Matching
 Lucas-Kanade Optical Flow Matching when needed
 }
 Pick unambiguous hypothesis having confidence > treshold1
 Pick ambiguous hypothesis having confidence > treshold2
while no contender exists with confidence > threshold3
 Run Second Chance Tracking Algorithm
 Attempt Target Breaking and/or Splicing
 form pairs from Leftover Blobs in current & last frame
 assign score to each pair based on {
 Fuzzy Histogram Matching
 Area Matching
 Lucas-Kanade Optical Flow Matching
 }
 Create new Targets from pairs whith score > threshold1
 save all unmatched Blobs for next frame Leftovers
 for (all unmatched Targets){
 increase the uncertainty rectangle & increment age
 if (trajectory took them out of frame or spliced) delete it
 if (age > age_treshold) delete it
 }
 for(all matched Targets){
 set age to 0
 update Kalman filter position and uncertainty equation
 }

Fig. 2. Main Program Flow

89

enough to form a single object. For some Hypothesis that will also
result in disambiguation, however the next steps are purposely
performed to eliminate any remaining ambiguities.
The first attempt of disambiguation employs Fuzzy Histograms.
For each blob claimed by more than one target a score is
calculated comparing the histogram of the ambiguous blob with
all the blobs previously associated with a target in the previous
frame. The score from histogram matching is combined with a
score calculated from the matching the area of the blobs in
question. T he weight multiplied with the area score is much
smaller than that of the Fuzzy Histogram score because the area
can vary due to occlusions much steeper than other visual
characteristics.
For all the ambiguous claims that fell bellow a co nfidence
threshold and were not picked yet, the Lucas-Kanade optical flow
tracking is used to update confidence in the claims and a second
run of the matching algorithm is used to pick Target with Blobs
pairs based on the newly updated confidence.
The Second Chance Algorithm investigates the possibility that the
association between Target and Blobs has not been possible,
because multiple blobs are too close together to be distinguished
from a bigger one. If this is found to be true, the position of the
Target is updated using an estimated position based on L ucas-
Kanade matching.
The Target Splicing Algorithm investigates the possibility that
unassociated Targets might been just fragments of a bigger Target
that were tracked individually because of partial occlusions and
now their blobs have merged. The Target Breaking Algorithm
looks at the targets whose new bounding rectangle grew much
faster than the sum of areas of the associated blobs. It attempts to
find targets that were mistakenly associated with blobs moving in
different directions than the rest of the Target and removes them
from it.
All the unmatched Blobs in the current frame up to this point are
compared against all unmatched blobs from the previous frame
using both Fuzzy Histogram and Lucas-Kanade Sparse Optical
Flow. The good pairs are used to initialize new Targets. Any blob
that has not been matched up to this point becomes part of the list
used to initialize targets in the next frame. While this is similar to
the MHT method, it is important to notice that we never keep
more than a single frame of Leftover Blobs for matching therefore
avoiding the exponential growth of hypothesis specific to MHT.

3. TARGET MODELING
Each Target contains a Kalman Filter used to model and predict
the movement of the targets in time. The Kalman state equation:





















⋅











































t

t

t

t

1t+

1t+

t+

t+

dy

dx

y

x

dt

dt=

dy

dx

y

x

1000

0100

010

001

1

1 (1)

is the standard equation for a body in motion in 2D space without
a control signal. The Kalman filter is used in a predict / update
cycle: On every frame the filter predicts where the new position of
the object should be and if the center of a blob is found within an
expected rectangle around the predicted position, a l evel of
confidence is associated with this prediction and the filter is
updated with the new measurement. The expected rectangle center

is provided by the Kalman filter while the size of it is provided by
a confidence equation and previous detected bounding rectangle
of all the Blobs that are part of the Target. At every updated step,
the distance between the predicted center and the real center is
calculated and the uncertainty in position is updated using the
exponential averaging,








⋅









−

−⋅










⋅



















dy

dx

α

αK+

y

x

α

α=

y

x

sz

sz

sz

sz

10

01

0

0 (2)

where the vector [dx dy] is the distance between predicted and
measured centers, while the resulting “sz” vector is the size of the
Uncertainty Rectangle.
The Uncertainty Rectangle expresses the uncertainty of the
location of the predicted center of the Target in the next frame and
is used to calculate the Expected Bounding Rectangle (EBR) of
the next predicted position. More precisely if the Target currently
has a bounding rectangle TBR, EBR is going to be the rectangle

having:
()

()TBRszTBRsz

1t+t+

height+y,width+x=
y,x=center

size
1

.

Fig. 3. Target Blobs, Uncert Rect and EBR

Beside the position and location uncertainty, a T arget object
contains the last measured area, bounding rectangle and a f uzzy
histogram of all the blobs associated with the Target in the last
frame. Both of them are used to calculate the confidence in a
match. Given the At and Ab, the area of the Target and all the
considered Blobs respectively the confidence in matching by area
is calculated as:

()
()AbAt,max

AbAt,min=cA . (3)

The fact that each Target can be associated with more than one
Blob allows us to handle Target fragmentation that is occurring
when a Target passes in front of background spots having similar
color and texture as the Target, or when it is partially occluded by
small objects in front of it. Since a Target needs to have a w ell
defined center in order to be used in the Kalman filter calculation

90

and determination of EBR, the center of a multi-blob Target is
calculated as in formula (4) where xi, yi and ai are the coordinates
and respective the area of a blob composing the Target.

i

N

=i
iT

i

N

=i
iT

N

=i
i

ay
A

=y

ax
A

=x

a=A

⋅⋅

⋅⋅

∑

∑

∑

−

−

−

1

0

1

0

1

0

1

1
 (4)

Another type of problem arises when two targets come very close
together, and their blobs generated by background subtraction
forms a single bigger blob. If the conjoined blob is part of the two
already initialized targets, one of them is going to lose tracking,
then an increase of its uncertainty rectangle will follow. When the
Targets separate the matching algorithms will find the blob within
its (very large now) EBR and usually Lucas-Kanade and other
matching functions will be able to correctly assign the blob back
to the right Target.
A much more difficult problem arises when a new object with a
color close to an existing Target and having a s ize bigger than it
enters the Target’s EBR. The new object fails to initialize as a
new target and will be adopted by the existing one, resulting in
false tracking. When the new blob is much bigger than the
existing one, the only partial solution we have at this moment to
this problem is to avoid some false tracking with much bigger
objects by imposing a restriction that we will not disambiguate an
hypothesis that makes a given blob to grow 2 times or more unless
the two subsequent blobs overlap. However an object that is just
marginally bigger than the existing Target and that has a relatively
close color can still generate false tracking. This remains an open
problem as of this moment. If the new object is smaller than the
target, the algorithm will stay fixed with the current Target when
they split and the problem does not arise at all.

4. TARGET LIFE MANAGEMENT
New Targets are created from the “LeftOver Blobs” i.e., from the
Blobs that were not assigned to any existing Target by the end of
the frame processing. At the end of each frame, all left-over Blobs
are paired with all the leftover Blobs from the previous frame and
then the pairs are refined consecutively by Fuzzy Histogram
matching, area matching and Lucas-Kanade matching. The best
matching pairs over a certain threshold are selected to initialize as
new Targets.
Each Target keeps a frame number with the value of the last frame
when a p osition updates i.e. a successful matching has taken
place. Using the saved frame number and the number of the
current frame each Target has a calculated Age which is defined
as the number of frames passed from the last successful update. A
Target that failed to be updated for one or more frames is called a
Lost Target. The age of a T arget is directly correlated with the
uncertainty in position. After a successful update the size of
uncertainty rectangle is calculated as described above. For a lost
target the size of the uncertainty rectangle is each frame until its
size equals frame size.

When a L ost Target ages over a cer tain limit, the Target is
eliminated from the array of active Targets, this is a Target being
destroyed. If the same object is detected later, it will be
reinitialized as a n ew Target and unfortunately all the previous
trajectory information will be lost.
A Target is also destroyed when it is lost and the projected
trajectory is determined to be out of the frame. In this case we do
not have to wait for the maximum age before Target elimination.
When a T arget is lost while its EBR is intersecting another
Target’s EBR the Target is marked as occluded. Occluded Targets
are permitted to reach an older age before they are removed from
the system. Active research is currently being done to an
algorithm to detect occlusion with fixed objects (non Targets)
from the environment that are located between the Targets and the
camera.
Finally a target that is declared to be Spliced into another by the
Breaking and Splicing algorithm is also destroyed immediately to
avoid generating false hypothesis.

5. FUZZY HISTOGRAM
Fuzzy Histograms (FH) are used as a fast method to increase
confidence that a particular blob located within the expected
rectangle predicted by the Kalman Filter is the tracked object. For
each detected Blob a Fuzzy Histogram is calculated automatically
when a Blob object is created from a detected contour. Whenever
a Blob is assigned to a Target, the Blob’s main data including the
Fuzzy Histogram is carried inside the Target. The disambiguation
algorithm for a Blob claimed by two or more Targets first makes
use of the FH for a quick comparison. FH is also used as the fast
way to filter away candidate pairs used for Target initiation.

Fig. 4. Fuzzy Histogram Membership Function

Unless other work is done with FH we are not converting the
RGB color space to HSV space, but we are using a t hree
dimensional histogram for each color component of RGB space
while also using a much larger interval between bars. That is, we
are using only 4 t o 6 bars for each color component and we
normalize the values of the histogram into the interval [0, 1] to
make it independent of the number of pixels. While this approach
is more sensitive to changes in brightness it is also more robust in
matching variation in color and is faster.
For updating FH with pixel values we are using a trapezoidal
membership function allowing for small variation around the main
histogram bars, as shown in Fig. 4. If the pixel value is falling in
the collar C vicinity of the histogram bar then only the given bar

91

is updated, otherwise both bars bounding the pixel will be updated
proportionally with the distance from the pixel to the neighboring
bar collars. Comparison of two histograms A and B are done by
returning a matching score calculated according to the formula (5)
where r, g, b are the normalized values for Red, Green and Blue
respectively and N is the number of bars in the histogram.

| | | | | |
6

1

1

0

iBiAiBiA
N

=i

iBiA rr+gg+bb
=s

−−−
−
∑
−

 . (5)

6. LUCAS-KANADE TRACKING
The LK method provided by the OpenCV library implements a
sparse iterative version of the Lucas-Kanade optical flow with
pyramids. This function is used to find a set of matching features
(corners) in two consecutive images in order to increase the
confidence that the object located around a detected Blob is a
match for a given Target or the previous frame Blob.

If Fuzzy Histogram and Area matching methods did not provide
enough accuracy to unambiguously pick or reject all the generated
hypotheses we use an implementation of Lucas-Kanade method to
increase the confidence in a particular hypothesis.
Because LK calculations are CPU intensive we are taking two
major optimization in using it. First, we use LK only when it is
impossible to disambiguate a Hypothesis without it, i.e. only after
using Fuzzy Histogram and Area matching, if we still don't have a
clear cut on the set of data association hypothesis. Second, we are
not calculating LK optical flow on full size image but we are
cropping sub-images around the Blobs and the Target of interest,
and apply the algorithm for LK matching only on the selected
sub-images as seen in Fig. 5.
To perform LK matching we select 2 images with a size a b it
larger than the maximum size of bounding rectangles of both
Target and Blob(s) and on the Target image detect Shi-Tomasi
features. We retain for matching purpose only those features that
are located either inside or at the borders of the binary masks of
the blobs that are part of the Target.

Fig. 5. LK Cropped Window and Mask

Then we calculate the vector of matching features using the
Lucas-Kanade optical flow method. The returned matching score
is the number of features detected on the second image divided by
the number of the featured that were passed to the matching
algorithm, i.e. located inside or at the border of the Target’s blobs

in the first image. The procedure is illustrated in pseudo-code in
Fig. 6.

7. HYPOTHESIS MANAGEMENT
For each frame, the Targets already tracked will lay claims to all
the Blobs detected by the subtraction of current image from the
Gaussian Mixture Model of the background. Each claim is called
an Hypothesis and it is a triplet {TargetId, set<BlobId>,
confidence}. The set of Blobs in the hypothesis are all the blobs
that intersects the EBR of the Target. It is quite possible at this
point that if two or more Target EBR's intersect the same Blob,
then it will be assigned to multiple hypotheses. This is called an
Ambiguity and it is the job of the Ambiguity Resolving Algorithm
to try to resolve them.
The original confidence associated with a hypothesis is calculated
based on the size of the Uncertainty Rectangle calculated with
formula (2). The bigger the Uncertainty Rectangle the smaller the
confidence that is associated to that hypothesis when the claims
are laid.

Ambiguity Resolving Algorithm will list all the Hypotheses that

share one or more Blobs and for each shared Blob a score is
calculated based on Fuzzy Histogram and Area. The common
Blob is then assigned to the clear winner.
To resolve ambiguities that persist up to this moment the MSER
[10] segmentation is used to attempt to separate regions that may
belong to different objects but are so close together that their
movement blobs merged. Like previous algorithms discussed
above, the MSER segmentation is performed only on a sub-image
cropped from a rectangle drawn around the blobs of interest. Then
a new matching score is recalculated on the segmented image to
identify the “winning bid”.
If there is not a clear winner (i.e. having a score with at least 20%
higher than the next contender) and if the size of the Blobs in
question are over a minimal size required for LK to provide
meaningful results, Lucas-Kanade matching is employed to
update the confidence. After a particular blob has been removed
from a multi-blob Target the confidence is re-initialized at the
value resulting from EBR size and updated back with the score
from FH and Area for the remaining Blobs. LK is not used again
at this point until required because of the remaining ambiguities.
The confidence in the hypothesis is never assigned from scratch
but is updated from the previous one based on formula:

lkMatchingScore(Target, Blob){
 rectSz=max(TargetRectSz, BlobRectSz)+SmallBorder
 tgtImg=ImageAroundTarget(rectSz);
 blbImg=ImageAroundBlob(rectSz);
 mask=binaryImageOf(AllBlobsInTarget)
 goodFeaturesToTrack= Shi-Tomasi(TargetRect)
 usedFeature = goodFeaturesToTrack & mask
 resFeatures=calcOpticalFlowPyrLK(tgtImg, blbImg,
usedFeatures)
 return count(resFeatures)/count(usedFeatures)
}

Fig. 6. LK Tracking Procedure

92

where Confidence is the Confidence already assigned to the
hypothesis and score is the result from the last test performed. The
alpha coefficient is dependent of the level of trust on the particular
test. The value for alpha is small for Area match because the area
of a detected blob can vary widely due to occlusion, and for FH
and LK match which have proved to provide high quality results.
There are two methods for picking a hypothesis in order to
perform data association between Targets and Blobs:
Unambiguous picking and Ambiguous picking.
Unambiguous picking is the method of first choice. We select a
hypothesis with a confidence over a certain threshold such that no
Blobs associated with this hypothesis are claimed by any other
hypothesis. It is employed early on a fter just FH and Area
updates. If ambiguity persists another attempt for Unambiguous
picking is attempted after the LK update.

Ambiguous picking is used as the solution of last resort before
labeling all the remaining Blobs as leftover and resort to Second
Chance Algorithm. Ambiguous picking selects a hypothesis with
confidence above a given high-threshold that no other competing
hypothesis containing a Blob shared with this one have a
confidence over a low-threshold. All the hypothesis that were not
accepted by the Ambiguous picking will be discarded since no
further Hypothesis processing will happen after this point.

8. SECOND CHANCE ALGORITHM
The Second Chance Algorithm assumes that matching between
the Target and Blobs failed because either multiple Blobs are
located too close for the Background Subtraction and
Segmentation to differentiate between them; or because the Target
took a movement incompatible with the Kalman Filter prediction.
This latest case can happen for example when a b all hits a wall
and the trajectory diverge significantly from what Kalman Filter’s
state equation can handle. The Second Chance Algorithm will use
the Search Rectangle defined as the rectangle containing the
Target if it would move from the previous known position at what
is assumed to be the maximum speed. More precisely, if the last
confirmed position of the target center was (x, y) and the Target
was contained into a rectangle with dimensions (w, h) the Search
Rectangle is centered at (x, y) and has dimensions:
() ()dtvY+hdt,vX+w=sHsW, ⋅⋅⋅⋅ 22 , (6)

where vX, vY are the maximum expected speed (in pixel /
second) for a T arget on the respective coordinates and dt is the
duration of a frame.
Here the algorithm makes use of innate knowledge about the
environment, in the form of a function provided by the Settings
class which based on the position and size of an object will
estimate a maximum speed expected for that object. The method
assumes that small blobs are farther away while very large blobs
are closer to the camera, and returns an expected maximum speed
for each Blob. This expected maximum speed is used in the
calculation of the search rectangle as described above.
The Second Chance Algorithm relies on br ute-force Lucas-
Kanade matching to find the image of the last known Target into
the Search Rectangle. At this point we may not have
distinguishable Blobs to update the tracking based on their center.
To update the Kalman filter with new position estimate E(xE,yE)
we first calculate the center of mass of the LK matching points in
the new frame C2(x2c, y2c) and in the previous frame C1(x1c,
y1c), then we calculate the point E such that the offset from E to

C2 is the same as the offset from L to C1, L(xL,yL) is the
previous known position.

() ()

() ()

() () () ()CCCC

N

=i
iCC

N

=i
iCC

y1,x1y2,x2+yLxL,=yExE,

y2x2,
N

=y2,x2

y1x1,
N

=y1,x1

−

⋅

⋅

∑

∑
−

−

1

0

1

0

1

1

. (7)

9. CONCLUSIONS
The tests we run showed our method to be able to track two RC
vehicles and a person walking inside a room using a IP camera
mounted at the corner of a room near the ceiling. The camera
provided 640x480 JPEG images accessible via HTTP with an
average frame rate of 5 frames a second.
During the experiments it w as noticed that our optimization
worked as expected. While tracking only one or two vehicles the
LK matching algorithm is very rarely called for over 92% of the
time while the tracking has been performed exclusively with FH
and Area matching alone. Even small occlusions are being
resolved without the need to invoke LK in over half of the
instances.
For example while tracking a s ingle vehicle alone for a duration
of about 800 frames, a single invocation of LK matching has been
performed when the RC car took a semi-circle at high speed. With
two vehicles LK is being invoked mostly when vehicles EBR
intersects.
Bringing a person in the scene changes things radically due to
much larger size of the person and more fluid changes in shape.
Due to severe occlusions LK is being invoked around every other
frame when the persons walk in front or in the back of the other
targets.
The experiments showed that it is much easier to track vehicles
than persons. Vehicle tracking has been showed to recover very
easily from occlusions, while tracking a person occluded by fixed
objects often fails when the person came back into the view,
creating spikes in CPU usage. The low frame rate provided by the
IP camera is another source of problems for tracking the person.
Often the person is able to turn fast enough into a frame such that
the view is sideways while we have a front view in the next frame
and LK matching fails to find enough corresponding points. A
better IP camera capable of higher frame rates is expected to
allow improvements in human tracking.
For performance comparison, a video 1100 frames @ 640x480
has been recorded to a file allowing us to run the algorithms
without any network latency into a repeatable manner. We run the
measurements on a Pentium E5200 @ 2.50GHz and compared
MP-Tracker performance against Raw Lucas-Kanade Optical
Flow with 400 S hi-Tomasi points distributed across all the
images.

93

Table 1. Performance Comparison Summary

 MP-Tracker Raw LK OF

Min 33 ms 114 ms

Avg 39.4 ms 121.5 ms

Max 289 ms 171 ms

The experiment shows that on average, the MP-Tracker is about
three times more efficient than Raw Lucas-Kanade Optical Flow
calculation across the whole image. The spikes observed in MP-
Tracker coincide with the person walking relatively close to the
camera occluding both vehicles. In that case the MP-Tracker
lunches the MSER segmentation and restarts LK matching
afterward to resolve remaining ambiguities.

 Fig. 7. Performance Measurement
Active research is being done to solve this set of problems with
person tracking by exploring contour tracking and hierarchical
region grouping an idea inspired from [7]. A n alternative idea
that is in research as of this moment is the ability to perform
Target merging when two or more Targets exhibit trajectories that
can be interpreted with high confidence as a perspective
projection of parallel tracks. In the main program flow, as shown
in Fig. 2, this is referred as the Splicing part in Target Breaking
and Splicing.
However, the fact that the average time for processing is below
50ms allows us to provide real-time tracking information for

multiple objects while running multiple trackers connected to
separate cameras on the same multi-core computer on the Base
Station.

10. REFERENCES
[1] Marginean, T. M., Lu. C. 2013. A Distributed Processing

Architecture for Vision Based Domestic Robot Navigation.
In Proceedings of the International Conference on
Computers, Communications and Systems, Korea.

[2] Reid B. D. 1979. An algorithm for tracking multiple targets.
IEEE Transactions on Automatic Control 24:843–854.

[3] Antunes, D., de Matos, D. M., Gaspar, J. 2010. Multiple
Hypothesis Group Tracking in Video Sequences, In
Proceedings of the Portuguese Conference on Pattern
Recognition Vila Real, Portugal.

[4] Chovanec, M. 2005, Computer Vision Vehicle Tracking
Using Background Subtraction,Journal of Information,
Control and Management Systems, Vol. 1, (2005), No.1 7.

[5] Jun G., Aggarwal J. K.,Gokmen, M. 2008. Tracking and
Segmentation of Highway Vehicles in Cluttered and
Crowded Scenes, IEEE Workshops on Applications of
Computer Vision Copper, Colorado.

[6] Saravanakumar, S., Vadivel, A.,Ahmed C. G. S. 2011.
Multiple object tracking using HSV color space. Proceedings
of the 2011 International Conference on Communication,
Computing & Security, ICCCS Odisha, India.

[7] Byeon, M.,Chang, H. J.,Choi, J. Y., 2012. Hierarchical
Feature Grouping for Multiple Object Segmentation and
Tracking, IVCNZ Dunedin, New-Zeland.

[8] Bissacco A., Ghiasi S. 2006. Fast Visual Feature Selection
and Tracking in a H ybrid Reconfigurable Architecture. In
Proceedings of the Workshop on Applications of Computer
Vision.

[9] Benfold B., Reid, I D 2011. Stable Multi-Target Tracking in
Real-Time Surveillance Video. In Proceedings of Computer
Vision and Pattern Recognition, Colorado Springs, USA.

[10] Donoser, M., Bischof, H. 2006. Efficient Maximally Stable
Extremal Region (MSER) Tracking. In Proceedings of IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition.

94

